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In this work we analyze the universal scaling functions and the critical exponents at the upper critical
dimension of a continuous phase transition. The consideration of the universal scaling behavior yields a
decisive check of the value of the upper critical dimension. We apply our method to a nonequilibrium
continuous phase transition. By focusing on the equation of state of the phase transition it is easy to
extend our analysis to all equilibrium and nonequilibrium phase transitions observed numerically or
experimentally.
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exponents as well as the scaling functions. Therefore we reach after a transient regime a steady state which is
One of the most impressive features of continuous
phase transitions is the concept of universality that allows
one to group the great variety of different types of critical
phenomena into a small number of universality classes
(see [1] for a recent review). All systems belonging to a
given universality class have the same critical exponents
and the corresponding scaling functions (equation of
state, correlation functions, etc.) become identical near
the critical point. Classical examples of such universal
behavior are for instance the coexistence curve of liquid-
vapor systems [2] and the equation of state in ferro-
magnetic systems (see for instance [1,3]). Checking the
universality class it is often a more exacting test to con-
sider scaling functions and amplitude combinations
(which are just particular values of the scaling functions)
rather than the values of the critical exponents. While for
the latter ones the variations between different universal
classes are often small, the amplitude combinations and
therefore the scaling functions may differ significantly
(see [4]). A foundation for the understanding of the con-
cept of universality as well as a tool to estimate the values
of the critical exponents was provided by Wilson’s renor-
malization group (RG) approach [5,6] which maps the
critical point onto a fixed point of a certain transforma-
tion of the system’s Hamiltonian, Langevin equation, etc.

Furthermore the RG explains the existence of an upper
critical dimension Dc above which the mean-field theory
applies, whereas it fails below Dc. At the upper critical
dimension the RG equations yield mean-field exponents
with logarithmic corrections [7]. These logarithmic cor-
rections make the data analysis quite difficult and thus
most investigations are focused on the determination of
the correction exponents [see Eqs. (5) and (6) below] only,
lacking the determination of the scaling functions.

In this work we investigate the universal scaling be-
havior of a continuous phase transition at Dc and develop
a method of analysis that allows us to determine the
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consider three different nonequilibrium systems exhibit-
ing a continuous phase transition into an absorbing phase.
Focusing on the equation of state our method can be
easily applied to all equilibrium as well as nonequili-
brium continuous phase transitions observed in numeri-
cal simulations or experiments (as long as the conjugated
field can be physically realized). In all three models the
dynamics obey particle conservation and, according to
the universality hypothesis of [8], all models are expected
to belong to the universality class of absorbing phase
transitions with a conserved field.

The first considered model is the conserved lattice gas
(CLG) which was introduced in [8]. In the CLG lattice
sites may be empty or occupied by one particle. In order to
mimic a repulsive interaction a given particle is consid-
ered as active if at least one of its neighboring sites on the
lattice is occupied by another particle. If all neighboring
sites are empty the particle remains inactive. Active
particles are moved in the next update step to one of their
empty nearest neighbor sites, selected at random.

The second model is the so-called conserved transfer
threshold process (CTTP) [8]. Here, lattice sites may be
empty, occupied by one particle, or occupied by two
particles. Empty and single occupied sites are considered
as inactive whereas double occupied lattice sites are con-
sidered as active. In the latter case one tries to transfer
both particles of a given active site to randomly chosen
empty or single occupied nearest neighbor sites.

The third model is a modified version of the Manna
sandpile model [9], the so-called fixed-energy Manna
model [10]. In contrast to the CTTP the Manna model
allows unlimited particle occupation of lattice sites. All
lattice sites which are occupied by at least two particles
are considered as active and all particles are moved to the
neighboring sites selected at random.

In our simulations (see [11,12] for details) we start
from a random distribution of particles and all models
2003 The American Physical Society 230601-1
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FIG. 1. The universal scaling function of the order parameter
and its fluctuations (lower right inset) for the CLG model, the
CTTP, as well as the Manna model for D � 3 with � � 0:840
and 	 � 2:069. The values of the nonuniversal metric factors
are listed in Table I. The upper left inset displays the nonuni-
versal scaling plots accordingly neglecting the nonuniversal
metric factors. For all considered models the scaling plots
contain at least four different curves corresponding to four
different field values (see [11,12] for details).
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characterized by the density of active sites �a. The den-
sity �a is the order parameter and the particle density � is
the control parameter of the absorbing phase transition,
i.e., the order parameter vanishes at the critical density �c

according to �a / ���, with the reduced control parame-
ter �� � �=�c � 1. Additionally to the order parameter
we consider its fluctuations ��a. Approaching the tran-
sition point from above (�� > 0) the fluctuations diverge
according to ��a / ����0

(see [11,12]). Below the criti-
cal density (in the absorbing state) the order parameter as
well as its fluctuations are zero in the steady state.

Similar to equilibrium phase transitions it is possible
in the case of absorbing phase transitions to apply an
external field h which is conjugated to the order parame-
ter, i.e., the field causes a spontaneous creation of active
particles (see for instance [13]). A realization of the
external field for absorbing phase transitions with a con-
served field was recently developed in [11] where the
external field triggers movements of inactive particles
which may be activated in this way. At the critical den-
sity �c the order parameter and its fluctuations scale as
�a / h�=	 and ��a / h��0=	, respectively.

Before we focus our attention to the scaling behavior
at the upper critical dimension Dc we briefly reconsider
the scaling behavior below and above Dc. In both cases
the order parameter obeys for all positive values of 
 the
universal scaling ansatz

aa�a���; h� � 
�� ~RR�a���
; ahh
	�: (1)

The universal scaling function ~RR�x; y� is the same for all
systems belonging to a given universality class whereas
all nonuniversal system-dependent features (e.g., the lat-
tice structure, the range of interaction, the update scheme,
etc.) are contained in the so-called nonuniversal metric
factors aa, a�, and ah [14]. Using the transformation 
 !
a�1=�
a 
, the number of metric factors can be reduced to

c� � a�a
�1=�
a and ch � aha

�	=�
a . We will see that this

simple reduction is not possible at the upper critical
dimension Dc. Thus instead of this transformation we
set in the following aa � 1 for D � Dc in order to for-
mulate for all dimensions a unified universal scaling
scheme.

The universal scaling function ~RR is normed by the con-
ditions ~RR�1; 0� � ~RR�0; 1� � 1 and the nonuniversal metric
factors can be determined from the amplitudes of
�a���; h � 0� � �a����� and �a��� � 0; h� � �ahh��=	.
These equations are obtained by choosing in the scaling
ansatz Eq. (1) a���
 � 1 and ahh
	 � 1, respectively.
Furthermore, the choice ahh
	 � 1 leads to the well-
known scaling equation of the order parameter

�a���; h� � �ahh�
�=	 ~RR	a����ahh�

�1=	; 1
: (2)

Thus plotting the rescaled order parameter �ahh���=	�a

as a function of the rescaled control parameter
a����ahh��1=	 the corresponding data of all systems in
a given universality class have to collapse onto the single
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curve ~RR�x; 1�. This is shown in Fig. 1 for the CLG model,
the CTTP, and the Manna model for D � 3. In the case
that metric factors are neglected one observes the non-
universal scaling behavior where each model is charac-
terized by its own scaling function (see the left inset of
Fig. 1).

Similarly the order parameter fluctuations are ex-
pected to obey the scaling ansatz

a���a���; h� � 
�0 ~DD�a���
; ahh
	�: (3)

Again the number of metric factors can be reduced by a
simple transformation to d� � a�a

1=�0

� and dh � aha
	=�0

� .
But it is instructive to use the above ansatz [Eq. (3)] since
exactly one new metric factor (a�) is introduced for the
fluctuations, and furthermore the universal functions ~RR
and ~DD are characterized by the same metric factors.
Identical metric factors for ~RR and ~DD occur for instance
naturally in equilibrium thermodynamics where both
functions can be in principle derived from a single ther-
modynamic potential, e.g., the free energy. In the case
of nonequilibrium phase transitions one can argue that
both functions can be derived from a corresponding
Langevin equation. Setting ~DD�0; 1� � 1 the nonuniversal
metric factor a� can be determined by the amplitude of
the divergence of ��a similar to the order parameter. In
the right inset of Fig. 1 we plot the rescaled fluctuations
as a function of the rescaled order parameter, i.e., the
universal scaling function ~DD�x; 1�. Similar to the equation
of state we get a good data collapse of the correspond-
ing data.
230601-2
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FIG. 2. The universal scaling function of the order parameter
and its fluctuations (inset) above the upper critical dimension
Dc � 4 with � � 1 and 	 � 2. The numerical data agree
perfectly with the universal mean-field scaling functions
~RR�x; 1� and ~DD�x; 1� (thick dashed lines).

TABLE I. The nonuniversal quantities for various dimensions. The uncertainty of the metric factors is less than 5%. For greater
uncertainties the corresponding data sets display significant deviations from the presented universal scaling plots.

Model D �c aa a� ah a�

CLG 3 0:217 91� 0:000 09 1 0.434 0.391 8.881
CTTP 3 0:604 89� 0:000 02 1 0.384 0.093 24.51
Manna 3 0:600 18� 0:000 04 1 0.311 0.074 32.24
CLG 4 0:157 05� 0:000 10 4.307 1.664 8.021 7.327

CTTP 4 0:567 05� 0:000 03 0.689 0.269 0.047 17.18
Manna 4 0:564 51� 0:000 07 0.690 0.245 0.040 18.82
CLG 5 0:122 98� 0:000 15 1 0.329 0.665 8.971

CTTP 5 0:548 64� 0:000 05 1 0.461 0.251 18.73
CTTP 6 0:538 16� 0:000 07 1 0.421 0.218 157.5
Manna 5 0:547 04� 0:000 09 1 0.870 0.225 20.69
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We consider now the scaling behavior above the upper
critical dimension Dc. According to the renormalization
group scenario the stable fixed point of the renormaliza-
tion equations is usually the trivial fixed point with
classical (mean-field) universal quantities. Thus, in con-
trast to the situation below Dc the critical exponents as
well as the universal scaling functions are independent of
the particular value of the dimension for D > Dc. In most
cases it is possible to derive these mean-field exponents
and even the scaling functions exactly since correlations
and fluctuations can be neglected above Dc. The mean-
field scaling behavior of the CLG model and the CTTP
was considered in [15] and agrees with that of directed
percolation, i.e., the scaling functions are given by
[15,16] ~RR�x; y� � x=2� 	y� �x=2�2
1=2 and ~DD�x; y� �
~RR�x; y�	y� �x=2�2
�1=2. One can easily show that � � 1,
	 � 2, and �0 � 0. The latter case corresponds to a jump
of the fluctuations at the critical point which was already
observed in numerical simulations [11,12].

In Fig. 2 we plot the rescaled order parameter as well
as the rescaled order parameter fluctuations for D � 5
and D � 6. In all cases the numerical data are in per-
fect agreement with the mean-field scaling functions
~RR�x; 1� and ~DD�x; 1�, respectively. Thus we clearly get the
upper bound for the critical dimension, namely, Dc < 5.
This is a nontrivial result since a recently performed
phenomenological field theory predicts the too large
value Dc � 6 [17].

We now address the question of the scaling behavior at
the upper critical dimension Dc � 4. Here the scaling
behavior is governed by the mean-field exponents modi-
fied by logarithmic corrections. For instance the order
parameter obeys in leading order �a���; h � 0� /
��j ln��jB and �a��� � 0; h� /

���
h

p
j lnhj�, respectively.

The logarithmic correction exponents B and � are char-
acteristic features of the whole universality class similar
to the usual critical exponents. Thus it was rather surpris-
ing that recent numerical investigations of the CLG
model (B � 0:24, � � 0:45) and of the CTTP (B �
0:15, � � 0:28) reveals different values of the logarith-
mic correction exponents [12]. In the following we will
develop a complete scaling scenario at the upper critical
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dimension which agrees which the RG conjecture, i.e., all
considered models are characterized by the same critical
exponents, the same logarithmic correction exponents, as
well as the same universal scaling functions.

As argued in [11] we assume that the universal scaling
ansatz of the order parameter obeys in leading order

aa�a���; h� � 
��j ln
jl ~RR�a���
j ln
jb; ahh
	j ln
js�:

(4)

Thus the order parameter at zero field (h � 0) and at the
critical density (�� � 0) is given in leading order by

aa�a���; h � 0� � a���j lna���j
B ~RR�1; 0�; (5)

aa�a��� � 0; h� �
��������
ahh

p
j ln

��������
ahh

p
j� ~RR�0; 1�; (6)

with B � b� l and � � s=2� l and where we use the
mean-field values � � 1 and 	 � 2, respectively. Similar
to the case D � Dc we set again ~RR�0; 1� � ~RR�1; 0� � 1.
230601-3
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FIG. 3. The universal scaling function at the upper critical
dimension Dc � 4. The right insets show the order parame-
ter at the critical density and for zero field, respectively. The
order parameter is rescaled according to Eqs. (5) and (6).
Approaching the transition point (h ! 0 and �� ! 0) the
data tend to the function f�x� � x (dotted lines) as required.
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Although the universal scaling ansatz [Eqs. (4)–(6)]
and the nonuniversal scaling ansatz (without metric fac-
tors) are asymptotically equal, they may lead to different
results for numerically available data. For instance the
nonuniversal metric factor in Eq. (5) results in the cor-
rection factor j1� lna�= ln��jB compared to the non-
universal ansatz. This factor tends to 1 for �� ! 0 but
in numerical simulations �� is hardly smaller than 10�3,
which explains why different values of B and � are
observed numerically [12].

According to the ansatz Eq. (4) the scaling behavior of
the equation of state is given in leading order by

aa�a���; h� �
��������
ahh

p
j ln

��������
ahh

p
j� ~RR�x; 1�; (7)

where the scaling argument is given in leading order
by x � a���

���������
ahh

p
�1j ln

��������
ahh

p
j� with � � b� s=2 �

B� �. Similarly we use for the order parameter fluctua-
tions the ansatz

a���a���; h�

� 
�0
j ln
jk ~DD�a���
j ln
jb; ahh
�	j ln
js�: (8)

Using the mean-field value �0 � 0 and taking into ac-
count that the order parameter fluctuations remain finite
at Dc [11,12] (i.e., k � 0) we get the scaling function
a���a���; h� � ~DD�x; 1�. The nonuniversal metric factor
a� is determined by the condition ~DD�0; 1� � 1.

Thus the scaling behavior of the order parameter and
its fluctuations at the upper critical dimension is deter-
mined by two independent exponents (B and �) and four
nonuniversal metric factors (aa; a�; ah; a�). We determine
these values in our analysis by the following conditions
which are applied simultaneously: first, both the rescaled
equation of state and the rescaled order parameter fluc-
tuations have to collapse to the universal functions
~RR�x; 1� and ~DD�x; 1� for all considered models. Second,
the order parameter behavior at zero field and at the
critical density is asymptotically given by the simple
function f�x� � x if one plots 	aa�a���; 0�=a���
1=B vs
j lna���j and 	aa�a�0; h�=

���������
ahh

p

1=� vs j ln

���������
ahh

p
j, respec-

tively. Applying this analysis we observed that convinc-
ing results are obtained for � � 0:35 and B � 0:20 (see
Table I for the values of the nonuniversal scaling factors).
The corresponding plots are presented in Fig. 3. In par-
ticular the data collapse of the equation of state is quite
sensitive for variations of the exponents B and �. Thus
the quality of the corresponding data collapse could be
used in order to estimate the error bars of the logarithmic
correction exponents. We obtained in this way � �
0:35� 0:06 and B � 0:20� 0:05.

In conclusion, the investigation of the universal scaling
behavior presents reliable results of the logarithmic cor-
rection exponents in contrast to the nonuniversal scaling
analysis. Furthermore the universal scaling analysis al-
lows one to determine the value of Dc just by checking
230601-4
whether the numerical or experimental data are in agree-
ment with the usually known universal mean-field scaling
functions.
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