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Topological Phase for Entangled Two-Qubit States
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Entangled states play a crucial role in quantum physics, ranging from fundamental aspects to
quantum information processing. We show here that entangled two-qubit states can also be used to
characterize unambiguously the subtlety of the SO(3) rotation group topology. The well known two
distinct families of path in this group are put in one-to-one correspondence with cyclic evolutions of
these entangled states, resulting in a � phase difference. We propose a simple quantum optics
interference experiment to demonstrate this topological phase shift.
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The latter phase, 
g, equals half of the area bounded by
the representing part of the Bloch sphere [4]. The dy-

the one-to-one map between SO(3) and the set of two-
qubit MES [6]. A suitable set of Hamiltonians that keep
Two-qubit states are the simplest quantum mechanical
systems displaying entanglement. Maximally entangled
states (MES) allow for a clear and measurable distinction
between classical and quantum mechanical predictions,
as exemplified by Bell-type inequalities [1]. They also
play a decisive role in quantum information processes,
such as teleportation or dense coding [2]. In addition, it is
known that any quantum computing protocol involving
many qubits can be implemented by concatenation of one-
or two-qubit gates [2]. This is why much attention has
been paid to two-qubit systems, their properties, and
characterizations.

In the present work, we intend to show that two-qubit
MES can also be used to display, even experimentally, the
well known double connectedness of the SO(3) rotation
group. Since the latter is often evoked to explain the
minus sign multiplying a spin 1=2 state after a 2�
rotation, we first argue that this is to some respect an
ambiguous statement. Indeed, take one-qubit state
j��t � 0�i � �j0i � �j1i subject to the Hamiltonian
ĤH � �h!

2 	̂	z (an effective magnetic field along the z axis).
At time t, the state reads j��t�i � e�i!t=2�j0i �
ei!t=2�j1i. Let us turn to the Bloch sphere representation
of j��t�i. The three coordinates are given by the expec-
tation values of the Pauli matrices. As is well known, the
expectation value of the spin precesses around the effec-
tive magnetic field. At t � 2�=! it has experienced a full
2� rotation, and a � phase for the wave function. The �
phase has been clearly demonstrated on several systems,
starting with a beautiful experiment on spin 1=2 neutrons
[3]. On general grounds, the change of global phase 

under a cycle decomposes into its dynamical part, 
d (as
derived from the time dependent Schrödinger equation)
and its geometrical part, the Berry phase 
g, whose
origin relies on the Hilbert space peculiar geometry.
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namical phase 
d is simply related to the time average of
the Hamiltonian. In the above case of one qubit precess-
ing in a magnetic field, we have 
d � �� cos� and 
g �
���1� cos��, so the expected global phase 
 � 
d �

g � �� for an initial state with j�j � cos�=2 and j�j �
sin�=2. Let us remark here that this � phase is present
even for � � 0, where it is of pure dynamical nature (with
no precession and therefore no rotation at all). We may
therefore question the geometrical interpretation of the �
phase. It would be more correct to state that this phase has
a geometrical and a dynamical component, being purely
geometrical only when � � �=2, when the initial state is
orthogonal to the magnetic field. However, even in that
case, we find problems in relating the phase to the double
connectedness of SO(3). Indeed, the latter property re-
lates paths on the SO(3) manifold, stating that, under
continuous deformations there are only two different
classes of paths, forming a two-element Z2 first homotopy
group: �1�SO�3�	. Note that two dimensional rotations
[SO(2)] have a more complicated structure: �1�SO�2�	 �
Z, the distinct paths being labeled by any positive or
negative integer number [5]. The above experiment on a
spin 1=2 particle was done with a constant magnetic field
and therefore a constant rotation axis. A natural question
is the relation of the measured � phase to topological
properties of the rotation group: Is the � phase related to
the subtle nature of SO(3) or to a property shared
by SO(3) and its subgroup SO(2), as it seems to be
the case? In the latter case, this phase gain is therefore
not directly related to the SO(3) double connectedness,
but rather to a multiconnectedness property shared by
both groups.

In the following we aim to develop a nonambiguous
relation between the SO(3) topology and the global phase
of a wave function. The idea is rather simple: we use
 2003 The American Physical Society 230403-1
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FIG. 1. Hypercube depicting the two topologically distinct
trajectories. The plus circuit, corresponding to no phase
change, is represented by the sequence of points A! B! F !
D! A. The minus circuit, corresponding to the gain of a �
phase, is represented by the sequence A! B! F ! E! A.
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constant the degree of entanglement is constructed, so
that the two-qubit MES traces a path in SO(3) when the
orientation of the Hamiltonians is changed. The evolution
is such that the dynamical phase vanishes while its geo-
metrical counterpart, in a sense that will be precised, also
vanishes, except at points where it abruptly changes to �.
Note that such a � phase, although not related to the
SO(3) topology, has already been discussed in the context
of entangled states [7].

A pure general bipartite state can be written as

j�i � �j00i � �j01i � 
j10i � �j11i; (1)

where �, �, 
, and � are complex coefficients satisfying
the normalization condition. The complex concurrence C
of this state is defined as C � 2���� �
� and its norm
equals the standard concurrence C for pure 2-qubits as
defined by Wootters [8]. The concurrence C is a measure
of the degree of entanglement for pure bipartite states,
assuming the value C � 1 for maximally entangled states
and C � 0 for product states. For the case of MES, state
(1) can always be written (up to a global phase) in the
general form [6]

j�i �

���
1

2

r
��j00i � �j01i � �
j10i � �
j11i�; (2)

where the star denotes complex conjugation. The Hilbert
space of all the MES can thus be defined as �MES �
f��;�� 2C2=j�j2 � j�j2 � 1 and ��;�� 
 ���;���g �
S3=Z2 � SO�3�; i.e., there is a one-to-one correspondence
between SO(3) and the MES. This represents a sphere (in
4D) whose opposite points are identified. By writing
states in the form of Eq. (2), we can see that each MES
can be denoted by a pair of complex numbers ��;��.

We now study closed trajectories in SO(3), correspond-
ing to the time evolution of MES subjected to precise
Hamiltonians. The net result is that, depending on the
homotopy classes to which the path belongs, the MES will
acquire either a 0 or � phase. In the following we show
how these purely topological characteristics can be theo-
retically implemented and illustrated via an interference
experiment.

Let us take as the initial MES the Bell state �� � 1;
� � 0�

j�i �
��
1
2

q
�j00i � j11i�: (3)

In order to implement the cyclic evolution of state (3), we
consider simple polygonal trajectories in SO(3): A se-
quence of evolution operators act for a fixed finite time
interval on the states, until they reach back the initial
state (3). A geometrical picture illustrating this time
evolution can be given by the hypercube of 16 vertices
(belonging to S3) depicted in Fig. 1. To get a discretized
approximation of SO(3) ( � S3=Z2) we must identify
opposite vertices, leaving altogether eight distinct points,
from A to H in Fig. 1, and the edges connecting these
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points. They all correspond to MES. The bar over the
letters denotes the opposite points. Point A is our initial
state (3) and point A is identified to �A. The first class of
trajectories that will be studied starts at A and finishes at
the same point, making a circuit in the polygon defined by
points A! B! F ! D! A in Fig. 1. This class will be
called from now on the plus class, since it is homotopic to
the identity and does not imply in a global phase change
of the initial state. An example of the other class of
trajectory, the minus class, is given by the sequence of
points A! B! F ! E! A. It also starts at point A but
ends at the point diametrically opposed to the initial one
(A). Thus, there is a global phase of� gained by the initial
state. Physically, this phase depends on the parity of the
number of times the state crosses the space orthogonal to
the initial one.

In order to keep the one-to-one relation between en-
tangled states and SO(3) elements, we consider, in our
trajectories, evolution operators leaving the complex con-
currence C constant. Taking �h! � 1, such unitary evolu-
tions can be realized by the Hamiltonian ĤH � 1

2 ~nn � ~		,
with ~̂		̂		 � 	̂	x ~xx� 	̂	y ~yy� 	̂	z ~zz. 	̂	x, 	̂	y, and 	̂	z are the three
Pauli matrices and ~nn � nx ~xx� ny ~yy� nz ~zz is a normalized
vector giving the orientation of the effective magnetic
field. This Hamiltonian represents a rotation acting on
only one of the qubits. The evolution operator correspond-
ing to this Hamiltonian has the form

ÛU � e�iĤHt �
�
cost2 � inz sin

t
2 �in� sint2

�in� sint2 cost2 � inz sin
t
2

�
; (4)
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where n� � nx � iny. Defining ! � ei�=4=
���
2

p
, we have,

for the points appearing in the hypercube of Fig. 1, A!
�1; 0�, B! �!; !�, C! �!
; !
�, D! �!;�!�, E!
�!
;�!
�, F ! �i; 0�,G! �0; 1�,H ! �0; i�. By changing
the interaction time t and the direction of rotation of our
two-level system, i.e., vector ~nn, we are able to reach,
departing from point A, all points in SO(3), representing
all possible MES. Notice that all rotations are performed
on one particle only. We choose to perform the first two
rotations in the first qubit and the last two in the second
qubit. Thus, the total operator acting on our states can be
written in the form ÛU � Id for the first half of the tra-
jectory and Id � ÛU for the second one. One can easily
check that in both cases the dynamical phases vanish. As
for the geometrical phase, it can also be defined for open
paths, as proposed by Pancharatnam [4]. This phase also
vanishes in the present case, except when the state crosses
the space orthogonal to the initial state, where it abruptly
changes by �.

The parameters in Eq. (4) can be easily found by
comparing this matrix to the necessary rotations to im-
plement each part of the circuits. By doing so, we find that
each part of the trajectory takes a time t � 2�=3 and the
only difference in the Hamiltonians is in the direction to
which ~nn points. These orientations �nx; ny; nz� read
A! B
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��������
1=3

p
��1;�1;�1�
FIG. 2. Scheme for the experiment enabling the measurement
of the global topological phase. Polarization MES are produced
B! F
��������
1=3

p
�1;�1;�1�
in the nonlinear crystal in modes a and b. Photons in mode b
F ! D

��������
1=3

p
��1;�1; 1�
are combined to mode c in a Mach-Zender interferometer. A
variable dephasing ( can be introduced in mode b, while wave
D! A
��������
1=3

p
��1; 1; 1�
plates properly oriented (P1 and P2) act on arms a and c,
F ! E

��������
1=3

p
�1;�1;�1�
respectively, performing the desired trajectories.

E! A
��������
1=3

p
�1; 1;�1�.
For both classes of trajectories, the Hamiltonians coincide
from A to F, from where the vector ~nn will take a different
value for each class of trajectory.

We now address the question of measuring such an
effect in an interference experiment. In order to test the
topological phase, one needs a setup enabling the inter-
ference of an entangled state after performing one of the
trajectories above with a reference one. A simple way to
do that consists of interfering entangled photon pairs, as
depicted in Fig. 2. Polarization entangled photon pairs are
currently produced with high fidelity and efficiency in
nonlinear optical systems [9]. Such twin photons propa-
gate in different space modes, which are denoted as a and
b. Using this notation, the MES state emerging from a
nonlinear crystal is j�i �

��������
1=2

p
�jHaVbi � jVaHbi�.

Photons in modes a and b are detected by detectors Da
andDb, respectively. Before detection, photons in mode b
enter a Mach-Zender interferometer (see Fig. 2). In the
first 50%–50% beam splitter (BS 1), mode b is combined
to mode c, which is in the vacuum state, j0ci. After that,
the total state is
j�i � 1
2�jHaVb0ci � ijHa0bVci � jVaHb0ci

� ijVa0bHci�; (5)

which is exactly what is needed to interfere two entangled
states: BS 1 produced two pairs of polarization MES, each
one of them entangled to one arm of the interferometer.
An experiment producing the reference fringes consists in
the introduction of a variable phase factor ei( in arm b of
the interferometer. Thus, before entering the recombining
BS (BS 2), the state of the system, taking into account
the dephasing, is j�i � 1

2 �e
i(jHaVb0ci � ijHa0bVci �

ei(jVaHb0ci � ijVa0bHci�. The passage through BS 2
changes the state into

j�i � 1
2��e

i( � 1��jHaVb0ci � ijVaHb0ci�

� i�ei( � 1��jHa0bVci � jVa0bHci�	: (6)

Coincidence detections in detector Da and Db produce a
counting rate P � 1=2j�1� cos(�j. The trajectories one
wants to implement are realized by photons in modes a
and c. The space of polarizations, described by the
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Poincaré sphere, is equivalent to the Bloch sphere [10].
For polarizations, all rotations in the Poincaré sphere can
be accomplished via wave plates properly orientated
introducing a dephasing in one of the polarization axis.
The most general rotation matrix can be produced by a
sequence of three wave plates: the first one introducing a
dephasing of  in the vertical polarization axis, followed
by the second one which introduces a dephasing of � and
makes an angle �with the vertical polarization. Finally, a
third plate introducing a dephasing of � in the vertical
polarization can be added. As a result, a rotation matrix is
generated which has exactly the same form as (4) with the
following correspondence: the parameter � plays the role
of time t, while for the components of vector ~nn we have
nx � � sin2� cos , ny � sin2� sin , and nz � cos2�. We
can thus introduce a set of plates acting in mode a and
performing the common part of the trajectories, i.e., from
point A to F. The remaining plates are put in arm b of the
interferometer and their orientation determines the top-
ology of the trajectories. The total state, before reaching
BS 2, is then j�i � 1

2 �e
i(jHaVb0ci � i��1�njHa0bVci �

ei(jVaHb0ci � i��1�njVa0bHci�. The value of n (odd or
even) depends on the nature of the trajectory. After pass-
ing through BS 2, the whole state transforms into

j�i � 1
2f�e

i( � ��1�n	�jHaVb0ci � jVaHb0ci�

� i�ei( � ��1�n	�jHa0bVci � jVa0bHci�g: (7)

If we now make the same coincidence counts in detectors
Da and Db, we obtain the fringes P � 1=2j���1�n �
cos(	j. If the trajectory is of the minus class, a dephasing
of one half period will be seen in the interference pattern.
However, if it is of the plus type, the fringes remain at the
same place. The choice of splitting the action of the
rotations between the first and second qubit was made to
stress the importance of using entangled states in the
experiment in order to keep the one-to-one map from
photon states to SO(3) elements.

The gain of the � phase factor, as mentioned before, is
related to the number of times the MES crosses the space
of its orthogonal states. An interesting variation of the
experiment could well illustrate a different situation: one
could think of trajectories which are not necessarily
cyclic but, having crossed this orthogonal states space,
already correspond to a gain of the � phase. This would
mean that the final states interfering in BS 2 will no
longer be the same MES. As a consequence, there will
be a decrease in the fringe visibility, but the desired
dephasing would still appear.
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Another interesting point to address is the case of states
whose entanglement is not maximal. It can be shown that
in that case, the � phase also occurs. However, the rela-
tion between non-MES and the SO(3) group is more
complex [6], as well as the geometrical interpretation of
their time evolution.
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