
P H Y S I C A L R E V I E W L E T T E R S week ending
13 JUNE 2003VOLUME 90, NUMBER 23
Adiabatic Dynamics of Periodic Waves in Bose-Einstein Condensates
with Time Dependent Atomic Scattering Length

F. Kh. Abdullaev,1 A. M. Kamchatnov,2,3 V.V. Konotop,3 and V. A. Brazhnyi3
1Physical-Technical Institute of the Uzbek Academy of Sciences, 2-b, Mavlyanov strasse, 700084, Tashkent, Uzbekistan

2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia
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Evolution of periodic matter waves in one-dimensional Bose-Einstein condensates with time-
dependent scattering length is described. It is shown that variation of the effective nonlinearity is a
powerful tool for controlled generation of bright and dark solitons starting with periodic waves.
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Observation of Bose-Einstein condensate (BEC) in
gases of weakly interacting alkali metals have stimulated
intensive studies of the nonlinear matter waves. A new
area of physics—nonlinear matter waves and nonlinear
atomic optics—was originated. Generation as well as
dynamics of solitary wave pulses in BEC’s is one of the
most important related problems. Experimental observa-
tions of dark [1,2] and bright [3,4] solitons have recently
been reported. Theoretically, several methods of creating
solitary waves have been proposed. First of all, it is a
modulational instability [5], which is a universal phe-
nomenon of the nonlinear physics (especially intensively
explored in nonlinear optics; see [6]). This method, how-
ever, cannot predict exactly the parameters of generated
solitons. Another method, which is controllable in the
above sense, is the so-called phase engineering [2], which
consists of imposing an initial phase on a BEC and is
appropriate for generating dark solitons. The phase im-
printing, however, affects the whole background conden-
sate which acquires nonzero initial velocity and starts to
oscillate in a trap potential. The problem becomes even
more complicated when one is interested in generating
trains (or lattices) of solitons in BEC’s.

In this Letter we show that a powerful tool for gener-
ating and managing matter soliton trains can be provided
by variation of the effective nonlinearity, which in prac-
tical terms can be achieved by means of variation of the
s-wave scattering length as due to the Feshbach resonance
[7]:

as�t� � af1� �=�B0 � B�t��g: (1)

Here a is the asymptotic value of the scattering length far
from resonance, B�t� is the time-dependent external mag-
netic field, � is the width of the resonance, and B0 is the
resonant value of the magnetic field. Feshbach resonances
have been observed in Na at 853 and 907 G [8], in 7Li at
725 G [4], and in 85Rb at 164 G with � � 11 G [9]. Also,
rapid variation in time of as has been recently used for
generation of bright solitons in BEC [3,4]. Here we want
to indicate that in quasi-one-dimensional geometry an
initially weak modulation of the condensate can be am-
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plified by means of proper variation of the scattering
length. As a result, the condensate evolves into either a
sequence of bright solitons for as < 0 or ‘‘domains’’
separated by dark solitons for as > 0. In the case of
bright solitons the attractive forces between atoms exactly
compensate the wave-packet dispersion in the longitu-
dinal direction, so that the confining trap potential in
this direction becomes unnecessary. Then the motion of
bright solitons in the longitudinal direction can be con-
trolled by means of application of external forces.
Actually, oscillations of bright solitons in the trap ob-
served in [3,4] give a simple example of such controllable
motion. Thus, quasi-one-dimensional bright BEC solitons
behave as separate entities, and their investigation seems
to be a quite promising field of research. Dark solitons
may be considered as moving ‘‘domain walls’’ which
separate regions of a condensate with different values of
the order parameter. Investigation of dark solitons is also
useful for understanding the properties of BEC. In
general, the problem of the controllable soliton generation
is important for a number of BEC applications, like
atomic interferometry [10], and different kinds of the
quantum phase transitions [11], as well as in the context
of the nonlinear physics, including nonlinear optics and
hydrodynamics.

Our approach is based on the well established concept
that the BEC dynamics at low enough temperature is
well described by the three-dimensional (3D) Gross-
Pitaevskii (GP) equation. In some physically important
cases it admits a self-consistent reduction to the 1D non-
linear Schrödinger (NLS) equation

iut � uxx �
1
2�

2x2u� 2
gjuj2u � 0: (2)

In particular, this is the case of a cigar-shaped BEC of
low density when � � N jaj=a? � 1 and a2?=a

2
0 �

�2�=
���
2

p
, where N is a total number of atoms, a? �

� 
h=ma!?�
1=2 and a0 � � 
h=ma!0�

1=2 are linear oscillator
lengths in the transverse and in cigar-axis directions,
respectively (in the small amplitude limit they are of
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order of effective sizes of the condensate), !? and !0 being respective harmonic oscillator frequencies, � & 1 is a
positive parameter, andma is the atomic mass. In (2) time t and coordinate x are measured in units 2=��2!?� and a?=�,
respectively. The order parameter in the leading order is searched in the form

 �r; t� �
�������������

2�jaj
p

a?
exp

�
�i!?t�

y2 � z2

2a2?

�
u
�
�x
a?

;
�2!?t

2

�
;

where 
 � sgn�as�, and g�t� � as�t�=as�0�. It will be
assumed that as�t� does not change its sign and thus g�t�
is a positive-valued function. We notice that the smallness
of the density rules out a possibility of collapse phenome-
non (if a < 0).

We start with analytical estimates supposing that the
initial wave function u�x; 0� is modulated along the cigar
axis with the wavelength L of modulation much less than
the longitudinal dimension of the condensate, i.e., of the
l: L� l. Therefore, at this stage we neglect the smooth
trap potential and impose cyclic boundary conditions.
Then the initial wave function can be approximated
well enough by exact periodic solutions of Eq. (2) at � �
0. For example, if at t � 0 we take into account only one
space harmonic of the initial wave function, u�x; 0� �
u0 � u1 cos�x=L�, then this distribution can be approxi-
mated by well-known elliptic function solutions of Eq. (2)
with a small parameterm (see below).We are interested in
evolution of such solutions due to slow change of g�t� with
time. At the same time we suppose that the total time of
adiabatically slow change of g�t� is much less than the
period �2�=� of soliton oscillations in the trap potential,
so that we can neglect the influence of the trap potential
on the motion of solitons during the formation of soliton
trains and put � � 0 in Eq. (2). This means that we shall
consider analytically relatively small segments of the
modulated wave much greater than the wavelength L
and much smaller than the size l of the whole condensate
in the trap. To solve the problem of the condensate evolu-
tion, we note that substitution

u�x; t� � v�x; t�=
��������
g�t�

p
(3)

transforms Eq. (2) with � � 0 into

ivt � vxx � 2
jvj2v � i"v (4)

with "�t� � g0�t�=2g�t�. Thus, for slowly varying g�t� the
right-hand side of Eq. (4) can be considered as a small
perturbation: j"�t�j � 1. As it follows from Eq. (3), for
the initial distribution one has v�x; 0� � u�x; 0�. For our
purposes it is enough to consider typical particular solu-
tions of the unperturbed NLS equation which are pa-
rametrized by two parameters �1;2. Under influence of
the perturbation, these parameters in the adiabatic ap-
proximation become slow functions of time t. Equations
which govern their evolution can be derived by the fol-
lowing simple method.

First, the initial values of �1;2, as well as the coeffi-
cients in Eq. (4), are supposed to be independent of x;
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hence the wavelength L of the nonlinear wave evolving
according to Eq. (4) is constant,

dL��1�t�; �2�t��=dt � 0: (5)

Second, we find that the variable N��1�t�; �2�t�� �R
L
0 jvj

2dx changes with time according to

dN��1�t�; �2�t��=dt � 2"N��1�t�; �2�t��: (6)

Then, if the expressions for L and N in terms of �1;2 are
known, Eqs. (5) and (6) reduce to two equations linear
with respect to derivatives d�1;2=dt, which yield the
desired system of differential equations for �1;2. The
form of this system depends, of course, on the choice of
the parameters �1;2. It is well known from the theory of
modulations of nonlinear periodic waves that for
completely integrable equations (as the NLS equation)
the most convenient choice is provided by the so-called
‘‘finite-gap integration method’’ of obtaining periodic
solutions. Therefore we shall use the parametrization of
the periodic solutions of the NLS equation obtained by
this method (see, e.g., [12]), and consider three most
typical cases.

Case 1: cn-wave in a BEC with a negative scattering
length.—In the case of a BEC with negative scattering
length, 
 � �1, there are two simple two-parametric
periodic solutions of unperturbed Eq. (4). One of them
has the form

v�x; t� � 2�1e
�4i��21��

2
2�tcn�2

�����������������
�2
1 � �2

2

q
x;m�; (7)

where the parameter of elliptic function is given by m �
�21=��

2
1 � �2

2�. Then straightforward calculations give

L �
2K�m������������������
�21 � �22

q ; N � 8
�����������������
�2
1 � �22

q
E�m� � 4�22L; (8)

where K�m� and E�m� are complete elliptic integrals of
the first and the second kinds, respectively. Substitution of
these expressions into Eqs. (5) and (6) yields the system

d�1

dz
�

���21 � �2
2�E�m� � �22K�m��E�m��1

�21E
2�m� � �2

2�K�m� � E�m��2
;

d�2

dz
�

��22K�m� � ��21 � �22�E�m���K�m� � E�m���2
�21E

2�m� � �2
2�K�m� � E�m��2

;

(9)

where

z � z�t� � 2
Z t

0
"�t0�dt0 � lng�t�; z�0� � 0: (10)
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If dependence of �1 and �2 on z is found from (9), then
Eq. (3) gives evolution of the periodic wave u�x; t� with
slow change of the parameter z connected with time t by
Eq. (10). In particular, the density of particles in the
condensate is given by

juj2 � 4e�z�21�z� cn
2�2

����������������������������
�2
1�z� � �22�z�

q
x;m�; (11)

where transformation to the time variable should be per-
formed with the use of Eq. (10).

In Fig. 1(a) we present an example of the evolution of
the respective density distribution in the presence of a
harmonic trap potential where the parabolic parameter
and experimentally feasible parameters are used. The
figure shows that in the case of a negative scattering
length given by (1) an increase of the magnetic field
B�t� within the region B�0�<B�t�<B0 results in com-
pression of
the atomic density and formation of a lattice of matter
solitons.

Case 2: dn-wave in a BEC with a negative scattering
length.—Another simple solution of the NLS Eq. (4) with

 � �1 is given by

v�x; t� � ��1 � �2�e
�2i��21��

2
2�tdn���1 � �2�x;m�; (12)
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FIG. 1. Numerical solution of Eq. (2) with g�t� � et=#. Initial
conditions are chosen in the form u�x; 0�e��x

2=23=2 where u�x; 0�
is given by (a) Eq. (7) with �1�0� � 1, �2�0� � 0:2, # � 2, and
� � 0:02; (b) Eq. (12) with �1�0� � 1:5, �2�0� � 0:2, # � 1:5,
and � � 0:01; (c) Eq. (15) with �1�0� � 3, �2�0� � 0:3, # � 1,
and � � 0:01. In the insets we show density distributions at
initial (thin lines) and final (thick lines) moments of time.
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where m � 4�1�2=��1 � �2�
2. By analogy with (9) we

derive the following equations for �1 and �2:

d�1

dz
�

�1��1 � �2�E�m�
��1 � �2�K�m� � ��1 � �2�E�m�

;

d�2

dz
� �

�2��1 � �2�E�m�
��1 � �2�K�m� � ��1 � �2�E�m�

;
(13)

where it is supposed that �1 > �2 and z is defined by
Eq. (10). Now the density of particles is given by

juj2 � e�z��1 � �2�
2dn2���1 � �2�x;m�: (14)

An example of the respective evolution in the presence of
the potential is given in Fig. 1(b). One again observes
formation of a lattice of matter solitons starting with a
weakly modulated periodic wave.

Case 3: sn-wave in a BEC with a positive scattering
length.—In the case of (4) with 
 � 1 there exists simple
periodic solution

v�x; t� � ��1 � �2�e
2i��21��

2
2�tsn���1 � �2�x;m�; (15)

wherem � ���1 � �2�=��1 � �2��2 and it is supposed that
�1 > �2. Now we obtain

d�1

dz
�
�1��1 � �2��K�m� � E�m��
2�1K�m� � ��1 � �2�E�m�

;

d�2

dz
�
�2��1 � �2��K�m� � E�m��
2�2K�m� � ��1 � �2�E�m�

;

(16)

with z defined again by Eq. (10). The density of particles
in the condensate is given by

juj2 � e�z��1 � �2�2sn2���1 � �2�x;m�: (17)

This case, but in the presence of external trap potential, is
illustrated in Fig. 1(c), where by means of increase of the
magnetic field a periodic wave is transformed into a
lattice of dark solitons.

In physical units, the cases depicted in Fig. 1 corre-
spond to (a) N � 1:4� 104 7Li atoms in a trap with
a? � 7 "m and a0 � 230 "m, (b) N � 2� 104 7Li
atoms in a trap with a? � 6 "m and a0 � 416 "m, and
(c) N � 104 23Na atoms in a trap with a? � 3:4 "m and
a0 � 264 "m. In the last case, however, one observes
shifts of the soliton positions as well as a decrease of a
density of particles located about the potential minimum
because of weak oscillations of the condensate in the trap
potential (the expanding phase is depicted in the figure).
Thus, although effective # corresponding to physical time
[4] t0 � 40 ms (used in all simulations) is not large,
characteristic amplitudes of solitons placed in the center
of the trap potential in the cases (a) and (b) match well the
amplitude values following from the adiabatic approxi-
mation developed for a homogeneous NLS and for large
#, and in the case (c) one observes qualitative agreement.
No instabilities of periodic waves are observed during
periods of soliton train formation.
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The developed analytical approach can be generalized
to the NLS equation with linear damping; when the right-
hand side of Eq. (2) is equal to �i$u, $ being the damp-
ing constant, the substitution (3) yields again Eq. (4) but
now with a modified value of ": "! "� $. Hence, the
equations for �1 and �2 hold their form with z�t� defined
as z�t� � lng�t� � 2$t, so that the only change in
Eqs. (11), (14), and (17) is multiplication of their right-
hand sides by exp��2$t�. Another generalization corre-
sponds to moving soliton trains, which may be useful for
treatment of BEC in ring traps. One of the applications of
such moving soliton trains could be a ‘‘laser’’ of matter
solitons.

The consideration provided above implies that one
starts the adiabatic deformation with an initially periodic
solution. A question arises about the possibility of crea-
tion of such a state experimentally. A natural approach to
solving this problem would be the use of an optical trap
[13]. In such a trap it is possible to create a nonlinear
periodic distribution of a BEC [5,14]. Then, switching off
the laser beams, producing the trap, will result in a
periodic distribution of the condensate. However, it is
not stable without the trap since it is not a solution of
the respective GP equation. This difficulty can be over-
come if simultaneously with switching off the optical
trap one abruptly changes the scattering length (or alter-
natively provides a change of the number of particles) in
such a way that the existing distribution will satisfy (2).
To be more specific, let us consider an example of a BEC
with a positive scattering length in an optical trap given
by [14]: V�x� � �2V0sn�2&x;m�, where V0 is the poten-
tial amplitude, & � �1 � �2, andm is the same as in (17).
The equation describing BEC evolution now admits a
solution

u�x; t� �
����������������������������������
V0 � ��1 � �2�2

q
e2i��

2
1��

2
2�tsn���1 � �2�x;m�:

This last function also solves (2) with 
 � 1 and g �
�V0 � ��1 � �2�2�=��1 � �2�

2, and thus by switching off
the potential V�x� with simultaneously changing the scat-
tering length by �as � a0V0=��1 � �2�

2 one achieves
the desired initial state. Notice that although experimen-
tally a sn potential is not easily reachable in a general
case, for a large range of m it is approximated very
well by only a few first Fourier harmonics. For example,
for a situation described in Fig. 1 one has V�x� �
�2V0�1:47 sin�0:78x� � 0:15 sin�2:3x�� with the accuracy
about 1%.

In order to estimate characteristic scales of adiabatic
deformations we introduce an ‘‘aspect ratio’’ defined as
' � j�Aj=L, where �A is a total variation of the ampli-
tude of the periodic wave and L is its wavelength. Then
the cases '� 1 and '� 1 correspond to a solitonic
lattice and to a modulated plane wave. Dependence of
the scattering length on time can be simulated by g�t� �
et=t0 (physical units). Taking as an example the solution
230402-4
depicted in Fig. 1(b), where ' � 1 at t � 0, we find
that already at t � 30 ms the aspect ratio becomes ' �
100. The adiabaticity of the process means here that �

!0
�

t� �
!?

(physical units). It is satisfied well enough for
traps with !? * 2�� 200 Hz and !0 & 2�� 5 Hz.
Stability of the above solutions has been studied numeri-
cally in [15], where it has been found that soliton trains
are stable in the case of positive scattering length and are
also stable in the case of negative scattering length for
special choice of the parameters. In this context, the
adiabatic variation of the scattering length, which results
in the change of the wave parameters, can be used for sta-
bilizing (or destabilizing) respective periodic solutions.

To conclude, we have outlined the main idea of man-
agement of periodic nonlinear waves in BEC’s. The
theory, although being developed for a homogeneous
NLS equation, gives an accurate estimate of the central
part of a BEC placed in a magnetic trap, the latter being
studied numerically. The existence of trap can also be
taken into account in the framework of a more sophisti-
cated theory recently developed in [16].
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