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Velocity Profiles in Shear-Banding Wormlike Micelles
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Using dynamic light scattering in heterodyne mode, we measure velocity profiles in a much studied
system of wormlike micelles (CPCl=NaSal) known to exhibit both shear-banding and stress plateau
behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the
effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the
gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the
velocity profiles in all the regions of the flow curve and emphasize the complex, non-Newtonian nature
of the flow in the highly sheared band.
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clear magnetic resonance (NMR) [9] provide contradic-
tory evidence with respect to this simple scenario: those

alignment of the micelles along the velocity direction
[4,5]. As the shear rate is further increased above _��1, the
Understanding the correlation between mechanical
and structural response in non-Newtonian fluids submit-
ted to high deformation rates is crucial on both funda-
mental and technological grounds [1]. Among the variety
of complex fluids investigated in recent years, a wide
class exhibits flow-structure coupling that leads to a
strong shear-thinning behavior: along the steady-state
flow curve (shear stress � vs shear rate _��), a drop of up
to 3 orders of magnitude in the effective viscosity � �
�= _�� is observed in a very narrow stress range leading to a
stress plateau (for a review, see Refs. [1,2]).

A major breakthrough in the understanding of this
stress plateau was reached when local scattering experi-
ments revealed the existence of bands of different micro-
structures normal to the velocity gradient. These bands
correspond to a new shear-induced structure (SIS). Such a
structural shear banding has been observed in ordered
mesophases (lamellar, hexagonal, cubic) [3], wormlike
micelles [4,5], and transient gels [6].

However, global rheological data coupled to a local
characterization of the microstructure are not sufficient
to provide a complete picture of shear banding: a local
description of the flow with high enough resolution is still
missing, which makes detailed theoretical models some-
what speculative. In the simplest models of the velocity
field along the stress plateau, the system is supposed to
separate into two differently sheared bands: a weakly
sheared region that flows at _��1 and a highly sheared
region at _��2, _��1 ( _��2) being the lower (upper) limit of
the plateau. The high shear rate branch is assumed to
grow and to progressively fill the gap at almost constant
shear stress when the shear rate is increased [7,8].
Experimentally, this very basic issue of the nature of
the flow field remains obscure. Indeed local velocity
measurements by Callaghan and co-workers using nu-
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measurements show the existence of narrow bands of
high shear rate that do not necessarily appear at the point
of highest shear stress within the cell.

In this Letter, we show that high-resolution local ve-
locity measurements using dynamic light scattering
(DLS) help to clarify the experimental situation on shear
banding. We demonstrate that a picture with two bands
and one sharp interface holds for the much studied worm-
like micellar system CPCl=NaSal in brine. This corre-
sponds to the simplest scenario, with the potentially
important difference that the SIS under high shear rate
exhibits strong non-Newtonian behavior. Since the pio-
neering work by Rehage and Hoffmann [10], this system
has been demonstrated to exhibit both a stress plateau and
optical birefringence shear banding [4]. Our main con-
tribution relies on recording simultaneously the local
velocity and global rheological data in Couette geometry
along the whole flow curve. This enables us to demon-
strate for the first time the nucleation of a highly sheared
band at a critical stress and to follow its growth from the
rotor to the stator as the shear rate spans the stress plateau.
We show that the width of the band grows linearly with
the shear rate, in agreement with the decrease of the
measured effective viscosity, and that the SIS is not
Newtonian.

Wormlike micellar systems consist of very long cylin-
drical aggregates of self-assembled surfactant molecules
that mimic polymer solutions, but can dynamically break
and recombine [10,11]. Generically, one starts from an
isotropic viscoelastic solution of these micelles above the
semidilute regime, which behaves like a Maxwell fluid at
small deformations [1]. Upon increasing _�� and entering
the nonlinear regime, the onset of the stress plateau for a
critical shear rate _��1 is associated with the nucleation and
growth of highly birefringent bands, suggesting strong
 2003 The American Physical Society 228303-1
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new organization progressively fills the gap at almost
constant stress, up to a second critical shear rate _��2.
Above _��2, the system enters a second regime of appar-
ently homogeneous structure, with a second branch of
increasing stress (see Fig. 1 for a typical flow curve).

Our system of wormlike micelles is a binary mixture
of cetylpyridinium chloride (CP�, Cl�) and sodium sal-
icylate (Na�, Sal�) in 0.5 M NaCl brine. We focus on a
6% wt. sample at 21:5 �C, in the domain above the semi-
dilute regime (0.5–5% wt.) but far below the equilibrium
isotropic-nematic (I-N) transition that occurs at �IN �
20% wt.

Rheological flow curves are measured using a stress
imposed rheometer (TA Instruments AR 1000) and trans-
parent Couette cells of outer radius R2 � 25 mm and
different gap widths e (e � 1 or 3 mm). To access local
velocity, we use a heterodyne DLS technique that has
been described elsewhere [12]. The measurement of the
local velocity relies on performing the interference be-
tween a reference beam and light scattered from a small
volume of the sample of typical size 50 	m. The corre-
lation function of the interference signal exhibits oscil-
lations at the Doppler frequency q � v where q is the
scattering wave vector and v is the local velocity. Good
statistical convergence is achieved by averaging the cor-
relation function over 3 s. Velocity profiles v�x� are mea-
sured by moving the rheometer along the velocity
gradient (x axis) by steps of 30 	m, leading to a complete
velocity profile in about 2 min. Typical uncertainties are
about 5%.

In order to enhance the scattering properties of our
system, we add a small amount (1% wt.) of 30 nm col-
loidal particles (Ludox from Aldrich). We checked that
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FIG. 1. Steady-state flow curve for a 6% wt. CPCl=NaSal
solution in 0.5 M brine at 21:5 �C. The data were collected
under controlled shear rate in a 1 mm gap Couette cell. Vertical
lines indicate the limits of the banding domain. For _�� > _��2 �
26 s�1, the data were fitted by a power-law fluid � � 35:9 _��0:19

(dashed line) and by a Bingham fluid � � 55:1� 0:43 _�� (solid
line). Inset: high shear branch; error bars account for the
measured temporal fluctuations of � and _��.
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the rheological properties, particularly the plateau behav-
ior, were not affected by the addition of those scatterers.
Indeed, the small size of the scatterers compared to the
mesh size of the micellar network ensures a negligible
influence on the structural and mechanical behaviors of
the sample.

Figure 1 shows the steady-state shear stress recorded in
our micellar system using the shear-rate-imposed mode
of the rheometer. This flow curve presents a stress plateau
at � � 65 Pa that extends from _��1 � 2:5 s�1 to _��2 �
26 s�1 corresponding to a drop in the effective viscosity
by a factor of 10. Note that for _�� * _��2, the stress response
and the imposed shear rate are no longer strictly sta-
tionary: � and _�� fluctuate by about 2% around their
mean values. These fluctuations may originate from the
coupling between the feedback loop of the rheometer and
flow instabilities occurring at high shear rates [4,7].
Indeed, at _�� � 37 s�1, the sample began to fracture so
that no measurement is available at higher shear rates.

Figure 2 summarizes our main result. Velocity profiles
in the gap are displayed for _�� ranging from 1 to 28 s�1.
For all the shear rates in the plateau domain, the velocity
profiles exhibit an unambiguous banding structure: two
regions of different well-defined local shear rates coexist
when _��1 < _�� < _��2. The highly sheared band nucleates on
the inner wall of the Couette cell at the onset of the
plateau and expands as _�� is increased up to _��2 where
the band fills the whole gap. As can be seen in Fig. 2, the
local shear rate in the weakly sheared region remains
constant and equal to _��1 � 2:5 s�1. Moreover, although
significantly curved (see below), the velocity profiles in
the highly sheared region are compatible with a constant
local shear rate of _��2 � 26 s�1, leading to a viscosity
ratio of about 10 that remains almost constant all along
the plateau. Note that in all our data, no noticeable wall
slip was observed.

These profiles also yield the width h of the highly
sheared band. Figure 3(a) demonstrates that h increases
linearly with _��: h � e � _��� _��1�=� _��2 � _��1� : This linear
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FIG. 2. Velocity profiles recorded while measuring the flow
curve of Fig. 1. (a) _�� � 1 (	), 5 (�), and 12 s�1 (�).
(b) _�� � 15 (	), 22 (�), and 28 s�1 (�). The value x � 0 (x �
1) corresponds to the rotor (stator). The dotted line is v�x� �
_��1 �e� x� with _��1 � 2:5 s�1. The dashed lines correspond to a

shear rate _��2 � 26 s�1.
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FIG. 3. Width h of the highly sheared band. (a) h vs _��. With
the value _��1 � 2:5� 0:2 s�1 inferred from the velocity profiles
of Fig. 2, a good linear approximation of h� _��� is obtained with
_��2 � 26� 1 s�1 (solid line). (b) h vs �1. The solid line

corresponds to Eq. (1) with �? � 64:2 Pa.
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FIG. 4. Velocity profiles measured in the 3 mm gap Couette
cell and rescaled by the rotor velocity v0 for two values of _��
below the banding transition. For _�� � 1 s�1 (	), the normal-
ized data are well fitted using a weakly shear-thinning law �
_��0:7�0:1 (dotted line) [15]. For _�� � 2 s�1 (�), a stronger shear-

thinning behavior � _��0:28�0:03 provides a very good fit
(dashed line). The average deviations from the fits are 2%
and 3%, respectively. The solid line is the velocity profile
expected for a Newtonian fluid. Inset: Blowup of the middle
of the gap.
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relation is just a consequence of the continuity of the
velocity field between two regions of given shear rates
_��1 and _��2 [7,8]. Figure 3(b) reveals a physically more

relevant point: the increase of h vs � is consistent with the
assumption that the interface is stable at a given shear
stress �? � 64 Pa [13]. Indeed, in the Couette geometry
where ��x� � �1
R1=�R1 � x��2 (R1 is the radius of the
rotor and �1 the corresponding shear stress), this assump-
tion leads to

h��1� � R1

� �������
�1

�?

r
� 1

�
�

R1

2

�1 � �?

�? ; (1)

where the rightmost term results from the narrow-gap
approximation (e=R1 � 1). Note that taking into account
the curvature of the Couette cell also implies that the
stress slightly increases all along the coexistence domain
consistently with Ref. [14] (see Fig. 1).

Beyond shear-banding evidence, our technique enables
us to analyze in more detail the flow behavior of the
material in the regions below and above the plateau. In
Fig. 4 are displayed two normalized velocity profiles
below the plateau at _�� � 1 s�1 and _�� � 2 s�1 in a 3 mm
gap. For _�� � 1 s�1, the velocity profile is very close to a
straight line, consistent with the Newtonian behavior of
the micellar solution at low shear rates [4]. However, as
shown in the inset of Fig. 4, our data do not exactly fall on
the Newtonian velocity profile but rather present a small
curvature which can be accounted for by the rheological
behavior � _��0:7 [15]. When _�� � 2 s�1, i.e., just below
the onset of shear banding at _��1, the curvature is much
more pronounced and � _��0:28 leads to a perfect fit of the
velocity profile. This demonstrates the existence of weak
shear thinning on the low shear branch, that sharply
increases as the banding transition is approached.

Looking more closely at the velocity profiles in the
plateau region, one notes that the highly sheared band
displays a significant curvature even in a 1 mm gap [see
Fig. 2(b)]. The same observation holds for velocity pro-
files recorded at _�� > _��2 where the SIS has completely
invaded the gap. This shows that the SIS cannot be
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described by a Newtonian fluid. More precisely, this
curvature can be linked to the global rheological behavior
of the SIS. Indeed, the flow curve of Fig. 1 for _�� > _��2 is
very well fitted by either a power law � � A _��n or a
Bingham fluid � � �0 � A _�� [see inset of Fig. 1] [1].
The very same rheological behaviors account rather
well for the curvature of all the velocity profiles at _�� >
_��2 with the parameters �n; A� or ��0; A� inferred from the

global rheology (see Fig. 5 for _�� � 28 and 32 s�1). Note
that the Bingham behavior is suggested from the analogy
with other related viscoelastic systems, whose similar
nonlinear behavior has been interpreted in terms of a
steady system of bulk fractures [6]. Here, the range of _��
on the high shear branch is limited to 26–37 s�1 so that
we cannot discriminate between the two above behaviors.
Since temporal fluctuations of the velocity field also come
into play, only further studies will help to select the
correct non-Newtonian relation for the high shear
branch.

Let us now discuss the present results in light of pre-
vious studies concerning wormlike micellar systems. To
our knowledge, our measurements provide the first clear
evidence for shear banding in micellar solutions.
However, recent local NMR velocity measurements by
Fischer and Callaghan [16] lead to a radically different
description of the flow field. Reference [16] suggests the
nucleation and growth of a gel whereas our data clearly
shows the coexistence of two different well-defined shear
bands flowing at _��1 and _��2, respectively. These important
discrepancies may be explained by the fact that the dis-
tances to the I-N transition are drastically different in the
228303-3
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FIG. 5. Velocity profiles in the high shear branch at
(a) _�� � 28 s�1, � � 66:9 Pa, and (b) _�� � 32 s�1, � �
68:5 Pa. In each case, two solid lines correspond to two differ-
ent but indistinguishable velocity profiles corresponding to (i) a
power-law behavior � � 35:9 _��0:19 and (ii) a Bingham behavior
� � 55:1� 0:43 _�� [15]. The average deviations from the fits are
11% and 9%, respectively. The dotted lines account for the
measured global stress fluctuation of 2%.
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systems under study: CTAB=D2O at 20% wt. for which
�IN � 21% wt: in Ref. [16], and CPCl=NaSal in brine at
6% wt. for which �IN � 20% wt: in our case. Moreover,
rapid temporal fluctuations occur in the high shear rate
branch which might make the analysis of the NMR
measurements very difficult since one hour is required
to obtain a velocity profile using NMR. Definite conclu-
sions on that issue are left to future work.

More generally, our results can be analyzed in the
broader framework of complex fluid flows. Indeed, it
appears that many complex fluids with sometimes radi-
cally different microstructures display shear-banding be-
haviors similar to those discussed in the present Letter
[17,18]. Such behaviors are usually observed in the vicin-
ity of a shear-induced transition: pasty-fluidized state
transition in soft glassy materials [17] or shear-thickening
transition for highly dilute micellar systems [18]. It is
henceforth quite clear that phenomenological approaches
should be looked for as in Refs. [8,13,14]. However, in all
the above experimental systems, the nature and the rheo-
logical behavior of the SIS are still under debate. We
believe that non-Newtonian features, such as those re-
vealed in this Letter for the highly sheared structure, may
prove most relevant in the understanding of those inho-
mogeneous flows.

Another robust experimental fact is the presence of
temporal fluctuations and flow instabilities in a lot of
systems that display structural shear banding and/or in-
homogeneous velocity profiles. For instance, in our sys-
tem, flow instabilities lead to fractures at high shear rates
and to the expulsion of the sample from the rheometer
[4,7]. Such dynamical behaviors have been reported in
other systems: foams, granular pastes, and surfactant
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systems [17–19]. Thus, purely spatial approaches appear
as insufficient. This suggests to look for a spatiotemporal
picture of complex fluid flows near shear-induced transi-
tions with intermittent, localized, or even chaotic events.
We believe that further experimental work should focus
on this particular point and that theoretical models should
involve both temporal and spatial degrees of freedom.
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