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Colloidal Glass Transition: Beyond Mode-Coupling Theory
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A new theory for the dynamics of concentrated colloidal suspensions and the colloidal glass
transition is proposed. The starting point is the memory function representation of the density
correlation function. The memory function can be expressed in terms of a time-dependent pair-density
correlation function. An exact, formal equation of motion for this function is derived and a factoriza-
tion approximation is applied to its evolution operator. In this way a closed set of equations for the
density correlation function and the memory function is obtained. The theory predicts an ergodicity
breaking transition similar to that predicted by mode-coupling theory, but at a higher density.
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In spite of these successes, MCT’s problems are well
known [4]. The most important, fundamental problem is

of the pair-density correlation function while MCT
approximates the latter by a product of two density
There has been a lot of interest in recent years in the
theoretical description of the dynamics of concentrated
suspensions and the colloidal glass transition [1]. It has
been stimulated by ingenious experiments which provide
detailed information about microscopic dynamics of col-
loidal particles [2]. Because of the abundance of experi-
mental data the colloidal glass transition has emerged as a
favorite, model glass transition to be studied [3].

One of the conclusions of these studies is the accept-
ance of mode-coupling theory (MCT) as the theory for
dynamics of concentrated suspensions and their glass
transition [4]. Historically, this is somewhat surprising
since MCT was first formulated for simple fluids with
Newtonian dynamics [5] and only afterwards was
adapted to colloidal systems with stochastic (Brownian)
dynamics [6]. On the other hand, basic approximations of
MCT are less severe for Brownian systems [7].

MCT is a theory for correlation functions of slow
variables, i.e., variables satisfying local conservation
laws. For Brownian systems there is only one such vari-
able: local density. MCT’s starting point is the memory
function representation of the density correlation func-
tion [8,9]. The memory function is expressed in terms of a
time-dependent pair-density (i.e., four-particle) correla-
tion function evolving with so-called projected dynam-
ics. For Brownian systems this step is exact [11]. The
central approximation of MCT is the factorization ap-
proximation in which the pair-density correlation func-
tion is replaced by a product of two time-dependent
density correlation functions. As a result one obtains a
closed, nonlinear equation of motion for the density
correlation function. This equation predicts an ergodicity
breaking transition that is identified with the colloidal
glass transition. MCT has also been used to describe, e.g.,
linear viscoelasticity [12], dynamics of sheared suspen-
sions [13], and colloidal gelation [14]. By and large, its
predictions agree with experimental and simulational
results [4,15].
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that once the factorization approximation is made there is
no obvious way to extend and/or improve the theory. This
is most acute for Brownian systems because there the
density is the only slow mode and thus couplings to other
modes cannot be invoked. Furthermore, MCT systemati-
cally overestimates so-called dynamic feedback effect.
Thus, e.g., it underestimates the glass transition volume
fraction for a Brownian hard-sphere system (by about
10% [4]) and overestimates the glass transition tempera-
ture for a Lennard-Jones mixture (by a factor of 2 [16]).
Finally, MCT cannot describe slow dynamics in systems
without static correlations [17].

A way to improve upon MCT would be to introduce
many-particle dynamic variables into the theory. Such an
attempt has been made for simple fluids [18]; it was
argued that these variables (essentially, pair-density
fluctuations) describe clusters of correlated particles.
Unfortunately no quantitative results have been reported
based on this interesting approach.

We propose a different way to go beyond MCT. Rather
than factorizing the pair-density correlation function, we
derive an exact, formal equation of motion for it [19]. The
structure of this equation is very similar to that of the
equation of motion for the density correlation function;
‘‘pair’’ analogs of the usual frequency matrix and the
irreducible memory function can be identified. The basic
approximation of our theory is a factorization of the
evolution operator of the pair-density correlation func-
tion. After this approximation we obtain a closed system
of equations of motion for the density correlation func-
tion and the memory function. These equations predict an
ergodicity breaking transition; for a Brownian hard-
sphere system the glass transition volume fraction, �g,
is equal to 0.549 (note that �MCT

g � 0:525, �exp
g � 0:58).

Our theory is similar to MCT in that it relies upon an
uncontrollable factorization approximation. In contrast to
MCT, it uses this approximation one step later. Thus, e.g.,
our theory preserves the memory function representation
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correlation functions. However, as usual in the liquid state
theory, a priori these features do not guarantee the supe-
riority of our approach as compared to MCT.

Our theory starts from the memory function represen-
tation of the density correlation function, F�k; t�,

F�k; t� �
1

N
hn�k� exp�
t�n��k�i: (1)

Here N is the number of particles, n�k� is the Fourier
transform of the density, n�k� �

P
le

�ik�rl ; and 
 is the
N-particle evolution operator, i.e., the Smoluchowski op-
erator, 
 � D0

P
l�@=@rl�	�@=@rl� � �Fl
 [20], with D0

being the diffusion coefficient of an isolated Brownian
particle, � � 1=�kBT�, and Fl a force acting on particle l.
Finally, h� � �i denotes the canonical ensemble average; the
equilibrium distribution stands to the right of the quantity
being averaged, and all operators act on it as well as on
everything else. Usually, the memory function represen-
tation of the Laplace transform of the density correlation
function, F�k; z�, is written as [10]

F�k; z� �
S�k�

z� D0k2

S�k�	1�M�k;z�


; (2)

where S�k� is the static structure factor and M�k; z� is the
Laplace transform of the irreducible memory function.
We rewrite (2) in a form that will allow us to identify the
pair analogs of the frequency matrix and the memory
function. We write a memory function expression for the
Laplace transform (LT) of _FF�k; t�

LT	 _FF�k; t�
 � �k � 	1�M�k; z�O�1
�1O

� k
1

hn�k�n��k�i
F�k; z�: (3)

Here 1 denotes a unit 3D tensor, O is defined through
�k �O � k � hn�k�
n��k�i (note that O � 1D0N), and
M�k; z� is the Laplace transform of the current correlation
function evolving with projected dynamics,

M �k; t� � hj�k� exp�
irrt�j��k�i; (4)

where j�k� is a projected current density,

j �k� � Q̂QnD0

X
l

��ik� �Fl�e�ik�rl : (5)

In Eq. (5) Q̂Qn � 1� P̂Pn, and P̂Pn is a projection operator on
the density subspace,

P̂P n � . . .
X
q

n��q�
�

1

hn�q�n��q�i

�
n�q� . . . : (6)
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Finally, in Eq. (4) 
irr is the ‘‘one-particle irreducible
Smoluchowski operator’’ [10],


irr � Q̂Qn
X
l

@
@rl

Q̂Ql �
�
@
@rl

� �Fl

�
Q̂Qn; (7)

where Q̂Ql � 1� P̂Pl, and the projection operator P̂Pl reads

P̂P l � . . .
X
q

eiq�rlihe�iq�rl . . . : (8)

To make connection with the usual form of the memory
function representation we note that k �O �
k=hn�k�n��k�i � D0k

2=S�k� is the frequency matrix
and k̂k �M�k; z�O�1 � k̂k � M�k; z�; where k̂k � k=k, is
the irreducible memory function.

To obtain a convenient expression for M�k; t� in terms
of a pair-density correlation function we use the follow-
ing exact [21] equality:

j��k� �
X

�k1;k2�

X
�k3;k4�

n2��k1;�k2�g�k1;k2;k3;k4�

� hn2�k3;k4�j��k�i: (9)

Here n2�k1;k2� is the part of pair-density fluctuations
orthogonal to the one-particle density fluctuations,

n2�k1;k2� � Q̂Qn
X
l�m

e�ik1�rl�ik2�rm: (10)

Furthermore, in Eq. (9) the sums over ki < ki�1 are
understood and g denotes the inverse pair-density fluctu-
ations matrix (it is a pair analog of 1=hn�k�n��k�i),X

�k3;k4�

g�k1;k2;k3;k4� �

hn2�k3;k4�n2��k5;�k6�i � �k1;k5
�k2;k6

: (11)

Using identity (9) we can express memory function (4)
in terms of the time-dependent pair-density correlation
function evolving with one-particle irreducible dynam-
ics,

F22�k1;k2;k3;k4; t� � hn2�k1;k2� exp�

irrt�

� n2��k3;�k4�i: (12)

Rather than factorizing F22, we use the projection opera-
tor method to derive an exact, formal equation of motion
for this function. The derivation will be given elsewhere
[22]; here we present the structure of the final formula for
the Laplace transform of the time derivative of the pair-
density correlation function, _FF22,
LT	 _FF22�k1;k2;k3;k4; t�
 � �
Y7
i�3

@ X
�k2i�1;k2i�

A�k1;k2�	I �M�k5;k6;k7;k8; z�O�k7;k8;k9;k10�
�1
�1

�O�k9;k10;k11;k12�

�
k11

k12

�
g�k11;k12;k13;k14�F22�k13;k14;k3;k4; z�: (13)

In Eq. (13) I denotes a unit 6D tensor, O and M are block matrices, e.g.,
228301-2
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O �k1;k2;k3;k4� �

�
O11�k1;k2;k3;k4� O12�k1;k2;k3;k4�

O21�k1;k2;k3;k4� O22�k1;k2;k3;k4�

�
; (14)

and the following shorthand notation is used:

�k1;k2�O�k1;k2;q1;q2�

�
q1

q2

�
�

X
i;j

ki �Oij � qj: (15)

O and M are the pair analogs of O and M [compare Eqs. (3) and (13)]; in particular

��k1;k2�O�k1;k2;k3;k4�

�
k3

k4

�
� hn2�k1;k2� 


irr n2��k3;�k4�i; (16)

and Mij are pair-current correlations evolving with a two-particle irreducible evolution operator 
2irr, e.g.,

M 11�k1;k2;k3;k4; t� � hj2�k1;k2� exp�

2irrt�j2��k3;�k4�i; (17)
where, e.g.,

j 2��k3;�k4�i � Q̂Qn2D0

X
l�m

@
@rl

Q̂Qleik3�rl�ik4�rmi: (18)

Explicit formulas for O and M (including definitions of

2irr and Q̂Qn2) will be given elsewhere [22].

The main approximation of our theory is factorization
of the evolution operator for F22. Within this approxima-
tion the diagonal blocks of O and M are given by

O 11�k1;k2;k3;k4� � O22�k2;k1;k4;k3�

� NOS�k2��k1;k3
�k2;k4

; (19)
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M 11�k1;k2;k3;k4; t� � M22�k2;k1;k4;k3; t�

� NM�k1; t�F�k2; t��k1;k3
�k2;k4

;

(20)

and the off-diagonal blocks vanish. Consistently, we also
factorize g and F22�t � 0�.

Using (19) and (20) we can express F22 in terms of the
density correlation function and the memory function
(note that F22 does not factorize for t > 0). Substituting
F22 into the formula for the memory function and using
convolution approximation for static vertices [5,6] we get
M�k; z� �
nD0

2

Z dk1dk2

�2 �3
��k� k1 � k2�fk̂k � 	c�k1�k1 � c�k2�k2
g

2 S�k1�S�k2�

z� 	
D0k21=S�k1�

1�LT	M�k1;t�F�k2;t�=S�k2�

� �1 $ 2�


; (21)
where n is the density and c�k� is the direct correlation
function. Equations (2) and (21) determine time depen-
dence of density correlations and the memory function.

Equations (2) and (21) predict an ergodicity breaking
transition. In the nonergodic regime F�k; t� has a nonzero
long-time limit, limt!1F�k; t� � f�k�S�k�, where f�k� is
called a nonergodicity parameter. It follows from Eq. (2)
that in this regime also the memory function has a non-
zero long-time limit, limt!1M�k; t� � m�k�D0k2=S�k�,
and that f�k� and m�k� are related by

f�k�
1� f�k�

� m�k�: (22)

Using (21) and (22) we get a self-consistent equation for
f�k�:
f�k�
1� f�k�

�
n

2k2

Z dk1dk2

�2 �3
��k� k1 � k2�fk̂k � 	c�k1�k1 � c�k2�k2
g

2 S�k�S�k1�S�k2�f�k1�f�k2�
1� 	1� f�k1�
	1� f�k2�


: (23)
One should note that the right-hand side of an analogous
self-consistent equation derived from MCT has a similar
form; the difference is that within MCT the right-hand
side is a quadratic functional of f�k� [5], whereas in the
present approach it includes terms of all orders in f�k�.

For low enough densities Eq. (23) has only trivial
solutions [i.e., f�k� � 0]. For the hard-sphere interaction
a nontrivial solution appears at ng #3=6 � �g � 0:549.
Qualitatively, the ergodicity breaking transition is simi-
lar to that predicted by MCT: f�k� has a jump at the
transition. Also, f�k� at the transition is similar to that
of MCT at the MCT transition, �MCT

g � 0:525 (Fig. 1).
The factorization approximation proposed here is the
simplest possible one. There are two ways to improve
upon it. First, one could try to include in an approximate
way the off-diagonal blocks of M. To this end one
could express them in terms of a triple-density cor-
relation function and then factorize this function into a
product of three density correlation functions. Second,
since the frequency matrix involves only static cor-
relations, one could try to include it in a more sophisti-
cated way. For example, one could include two-particle
dynamics exactly [19]. The second extension could
228301-3
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FIG. 1. Nonergodicity parameter. Lines: theoretical predic-
tions at the ergodicity breaking transition; solid line: our
theory, �g � 0:549; dashed line: MCT, �MCT

g � 0:525.
Symbols: experimental data taken at � � 0:563 [15].
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describe glassy dynamics in systems without static cor-
relations [17].

To summarize, we proposed a new theory for dynamics
of concentrated suspensions and the colloidal glass tran-
sition. The theory goes beyond MCT in that it includes, in
an approximate way, time-dependent pair-density fluctu-
ations. In contrast to an earlier approach [18], the present
one uses pair-density correlation function evolving with
one-particle irreducible dynamics. The new theory pre-
dicts an ergodicity breaking transition similar to that of
MCT, but at a higher density.

The author benefited from inspiring discussions with
Rolf Schilling and Arun Yethiraj; support by NSF Grant
No. CHE-0111152 is gratefully acknowledged.
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