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Cytoskeleton Confinement and Tension of Red Blood Cell Membranes
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We analyze theoretically both the static and dynamic fluctuation spectra of the red blood cell in a
unified manner, using a simple model of the composite membrane. In this model, the two-dimensional
spectrin network that forms the cytoskeleton is treated as a rigid shell, located at a fixed, average
distance from the lipid bilayer. The cytoskeleton thereby confines both the static and dynamic
fluctuations of the lipid bilayer. The sparse connections of the cytoskeleton and bilayer induce a
surface tension, for wavelengths larger than the bilayer persistence length. The predictions of the model
give a consistent account for both the wave vector and frequency dependence of the experimental data.
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The RBC cytoskeleton is a two-dimensional, roughly
triangular, network of spectrin proteins [11] that is at-

100–200 nm and amplitude �10 nm ( � w) [1,14]. In
our confining-shell model (1) this length scale is related
A long-standing problem in the study of red blood cell
(RBC) structure is the simultaneous softness of its mem-
brane observed by thermal fluctuations [1] and the strong
shear elasticity found in static deformation experiments,
such as micropipette aspiration [2] and electrodeforma-
tion [3]. The membrane itself is a composite structure [4]
with an outer, gel-like extracellular network of long sugar
molecules (thought to be irrelevant to the structural
strength), a mixed lipid/protein fluid bilayer and an at-
tached, intracellular network. Previous theoretical mod-
els of this membrane treated it as a single, polymerized
network with the combined curvature bending modulus of
the lipid bilayer � and the shear rigidity of the cytoske-
leton � [5]. Such models were successful in describing
the response of the membrane in static deformation ex-
periments, which give��10�5–10�6 J=m2 [2,3,6]. How-
ever, comparing these models to the fluctuation data leads
to the conclusion that the membrane behaves as if the
shear modulus vanishes �� 0 [5,7]. This surprising con-
clusion comes from the shape and amplitude analysis of
the longest wavelength shape fluctuations [1,8].

The previous studies were concerned with the shape
fluctuations of longest wavelength (of the order of the size
of the RBC) [1,8]. Here, we focus on the fluctuation
spectrum, at length scales of 1� 0:1 �m, where the
effect of the cytoskeleton is clearly observed [9]. The
important question is to what extent the cytoskeleton
effects are distinguishable from the fluctuations of a
free, closed bilayer. Our main result is that for a consistent
description of both the static and the dynamic fluctuation
spectrum we must include the confining effects of the
cytoskeleton, whose sparse connections to the membrane
result in a large effective surface tension. As in previous
analysis of the experiments [1–9], the RBC fluctuations
are treated in terms of thermodynamic equilibrium. We
assume that the active processes are uncorrelated at the
length scales of interest, and their main effect is to
increase the effective temperature of the membrane [10].
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tached to the lipid bilayer at the nodes and at additional,
random sites along the spectrin polymers. The cytoske-
leton is well described as a network of entropic springs, of
length l� 80 nm [11,12], with an effective spring con-
stant: �4� 10�6 J=m2, which is close to the measured
static shear modulus: � ’ 6� 10�6 J=m2 [2]. Compared
with the lipid bilayer bending modulus � ’ 2� 10�20 J
[13], the curvature bending modulus of the cytoskeleton
is negligible [1,14]: �cyto ��w2 � 10�21–10�22 J for a
cytoskeleton thickness of w� 10–50 nm.

We now begin by analyzing the measured static corre-
lations [9] at the length scales of 1� 0:1 �m, and de-
scribe the effects of the cytoskeleton on the bilayer in
terms of continuum mechanics. This is feasible since the
cytoskeleton forms a rather open mesh that is attached
to the bilayer at discrete points with a contact area that is
small ( � 1 nm) compared to the internode distance
( � 100 nm). In a coarse-grained picture, we describe
the thermal fluctuations of the bilayer with a continuum
free energy functional
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that includes the usual bending energy of the bilayer (see,
for example, [15]) in terms of the normal displacement h.

The inhomogeneous attachment of the cytoskeleton to
the bilayer induces an effective surface tension 
 and an
overall confinement, modeled as a harmonic potential,
characterized by �. Both are related to the stiffness of the
spectrin filaments that make up the cytoskeleton, as
follows: The attachment of the cytoskeleton to the bilayer
causes stretching and deformation of the bilayer [16],
partly due to steric repulsion between the spectrin and
the bilayer around the point of attachment [17]. Balancing
the energies of the spectrin stretching and the local
curvature of the bilayer predicts that the membrane
has undulations of wavelength [16,18] L�
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FIG. 1. The calculated [Eq. (2)] wave vector dependence of
the bending modulus �=�q of the RBC (solid lines: 
; dashed
lines: 
0) compared with the experimental data for the RBC
[9] (, �). The crossover wave vector q0 is indicated by the
vertical dotted lines. Inset: A plot of ��q=�� 1��1 as a func-
tion of the normalized wave vector �qd�4 for small wave
vectors. The linear slope in the limit of q ! 0 is indicated by
the dotted line. The deviation from linear behavior is well
described by an effective surface tension 
 ’ �=�20 � 2:8�
10�7 J=m2 and 7:7� 10�7 J=m2 for the two cells (solid line).
Note that surface tension alone (� 	 0), without the effect
of the confining wall, does not describe the data (dash-
dotted line).
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to the persistence length of the bilayer �0 	 ��=��1=4 � L
[15], i.e., the wavelength above which the bilayer fluctua-
tions are confined. In other words, we predict that the
confinement potential is related to the spectrin stiffness
by ���=�2

0 � 108 J=m4.
The last term in (1) is mathematically equivalent to a

Lagrange multiplier that constrains the mean square am-
plitude of bilayer fluctuations to be equal to d2 	
kBT=8����

1=2 for an infinite bilayer. This term describes
the effect of the cytoskeleton on the bilayer through a
harmonic potential that maintains an average separation
d (of order w) between the lipid bilayer and the cytoske-
leton [15], here treated as an infinitely rigid shell that is
separated from the bilayer. The discrete contacts that
maintain the constant average separation are not specifi-
cally described in this continuum model; in a coarse-
grained picture, these contacts are the physical origin of
the constraint (potential) that determines the average
membrane-spectrin network separation.

The surface tension coefficient that we expect from the
constraining effect of the cytoskeleton-bilayer attach-
ment is 
 ’ �=�20. This expression gives the effect of
the bilayer shape constraint due to the cytoskeleton-
induced deformations of lateral size �0, described above.
It turns out that this large cytoskeleton-induced surface
tension is required to fit the experimental data, and is
2 orders of magnitude larger than the bare value that is
due to surface area conservation: 
0 � �=R2 � 1�
10�9 J=m2 (taking R� 4 �m as the RBC radius). At
length scales shorter than �0, we expect no stretching
of the cytoskeleton, and the observed surface tension
should approach the value of 
0.

We now calculate the spatial correlations for a two-
dimensional, flat bilayer, since for all but the largest
wavelengths �, the surface of the RBC is relatively flat:
50 nm< �< 1 �m<R� 4 �m. From Eq. (1) the
equal-time (static) correlations of the normal deflections
of the bilayer can be written [8,15]

hhqh�qi 	
kBT

�qq
4 ; �q 	 �� 
q�2 � �q�4: (2)

In the inset of Fig. 1 we plot the measured value of �q
[9] in the form ��q=�� 1��1 as a function of the normal-
ized wave vector �qd�4 [where d2 	 kBT=8����

1=2]. From
the linear slope in the limit of q ! 0 we find the values of
the confinement parameter � 	 7:5� 107 J=m4 and � 	
1:0� 107 J=m4 for the two cells measured. These values
correspond to mean amplitudes d ’ 20 and 35 nm and
�0 	 ��=��1=4 	 130 and 220 nm, respectively. At larger
values of q there is a noticeable deviation from a straight
line, arising from the effective surface tension 
� 7:7�
10�7 J=m2 and 
� 2:8� 10�7 J=m2 for the two cells.
There is a rather abrupt change at the crossover wave
vector q0 	 1=�0 (indicated by the vertical dotted lines
in Fig. 1), above which surface tension approaches the
bare value 
 ’ 
0 � 1:4� 10�9 J=m2 (solid lines in
Fig. 1).
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The spread in the measured parameters could be related
to differing experimental conditions and natural varia-
tions in the cytoskeleton network of RBC’s. Note that
surface tension alone, without the confining effect of the
cytoskeleton (i.e., � 	 0), does not fit the data (dash-
dotted line, Fig. 1 inset).

There is a qualitative difference in the power law of the
wave vector dependence of �q for RBC and an empty lipid
vesicle [19]. The vesicle is well described (Fig. 2) by
Eqs. (1) and (2) with � 	 0, and an effective bare surface
tension: 
0 ’ �v=R2

v � 2� 10�10 J=m2, where Rv �
27 �m and �v � 1:3� 10�19 J are the vesicle radius
and bending modulus, respectively. For the vesicle data,
the rms thermal amplitudes are d ’ 1–1:5 �m (note that
here d is not related to confinement). The data for the two
RBC collapse on a single curve when the wavelength is
scaled by the rms amplitude d (Fig. 2). The good scaling
of the data indicates that there is indeed a single impor-
tant length scale in the problem, namely, the persistence
length �0, that is in turn related to the cytoskeleton stiff-
ness �. This then determines the parameters appearing in
the free energy, � and 
, which are both crucial for fitting
the data.

We now use the same simple model of spectrin confine-
ment of the bilayer to describe the temporal correlations
of the membrane fluctuations. The shape fluctuations of
the RBC membrane are driven by both thermal and
metabolic energies. The fluctuations which are dominated
228101-2
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FIG. 3. Frequency dependence of the mean-square amplitude
[20] d2�!� of the RBC (), showing the reduction in the
amplitude due to partial ATP depletion (�) and complete
absence (RBC ghost) (*). The lines are fits to Eq. (5). The
ATP depleted system shows only thermal fluctuations, while
the normal RBC shows fluctuations whose amplitude is en-
hanced by a factor of �3 (solid lines). We use the parameters of
the soft RBC of Figs. 1 and 2. Inset: A normalized log-log plot
showing the power law dependence (!0 	 1 Hz). The two sets
of calculations are for both RBC’s of Fig. 1 (solid lines). The
dotted line shows the regime where d2�!� / !�4=3. The case of
a free bilayer, without the hydrodynamic effect of the rigid
wall, is in complete disagreement with the data (dashed line).
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FIG. 2. A plot of the measured effective modulus �=�q of the
two RBC [9] (, �) and an empty giant vesicle [19] (*) as a
function of the normalized wave vector qd. The graph shows
the data collapse of the two RBC when the wave vector is
normalized by the ‘‘wall’’ separation d. The calculations for the
two RBC and the vesicle are given by the solid and dashed
lines, respectively. Inset: A plot of ��q=�� 1��1 as a function
of the normalized wave vector �qd�4 for small wave vectors.
The linear slope in the limit of q ! 0 for the RBC is indicated
by the dotted line. The calculation for the vesicle is given by
the solid line.

P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2003VOLUME 90, NUMBER 22
by active processes have a frequency spectrum that is
confined to the range 0.3–1 Hz [20]. We therefore limit
our analysis to higher frequencies, for which it has been
shown [10,20,21] that the active processes can be ac-
counted for by an increase in the effective temperature.
The temporal height-height correlation function [7,22]
for a flat bilayer at a distance D� d from a rigid wall, is

hhq�t�h�q�0�i 	
kBT

�qq
4 e

�!�q�t; (3)

where �q is given in (2). Using standard hydrodynamic
techniques [22,23], we calculate [24] the hydrodynamic
interaction ��q� (Oseen interaction kernel)

��q� 	 �f�q� � �e�2Dq�1� e2Dq � 2Dq� 2�Dq�2�

(4)

and the relaxation frequency !�q� 	 ���q4 � 
q2 �
�����q� for a membrane bounded by an impermeable
wall [10,23] [�f�q� 	 1=4�q for a free bilayer], where
�� 3�water is some average viscosity of the cytoplasm
and external solution [7]. In the limit of short wave-
lengths (q ! 1) we recover the free bilayer frequency:
!�q� ! �q3=4�. For intermediate wavelengths q0 �
q � 1=D, we recover the result of Brochard et al. [7]:
!�q� ! �q6D3=3�. This is the range of wave vectors
which is dominant for the RBC membrane fluctuations.

The mean square amplitude of the normal fluctuations,
as a function of frequency !, is the Fourier transform
228101-3
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!�q�2 �!2 qdq: (5)

For a free bilayer this expression (5) gives an anoma-
lous frequency dependence [22]: d2�!� / !�5=3. We in-
tegrate the expression (5) numerically in the range
�=R< q < �=a (a ’ 5 nm), and compare with the ex-
perimental data [20]. In the inset of Fig. 3 we plot d�!�
using the parameters of the two cells of Fig. 1, and the
larger value of the effective surface tension, since we are
in the range q & q0, and the membrane feels the pull of
the cytoskeletal contacts. The good agreement of both the
static and dynamic data with our model, using similar
values of the bilayer-spectrin spacing D ’ d, shows the
overall consistency of our confinement model. Ad-
ditionally, we find that the spectrin mesh appears as an
impermeable wall to bilayer fluctuations. This is because
the rapid motion of the flexible spectrin filaments covers
the holes in the mesh in a time [25] !r � �l2=kBT �
2 �sec, which is much shorter than the typical time of
the bilayer fluctuations.

In the range q0 � q � 1=D, we recover the earlier
results [7,23] d�!�2 / !�4=3 (Fig. 3 inset). Note that in
the work of Brochard et al. [7] the confinement is due to
the finite thickness of the cell adhered to a substrate, not
of the cytoskeleton. Our calculation has the advantage
of consistently describing both the static (spatial) and
228101-3
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dynamic (temporal) fluctuation data. Note that the case of
a pure bilayer with large effective surface tension 
, but
without the hydrodynamic effect of the rigid wall, is in
complete disagreement with the data (dashed line, Fig. 3
inset). The thin water layer trapped between the bilayer
and the spectrin mesh is isolated from the flows of the
cytoplasm.

In Fig. 3 we show that the fluctuation amplitude of
normal RBC, adenosine triphosphate(ATP)-depleted
RBC, and RBC ghost, are all described by the same
expression (5) (using in our calculation the values of �
and 
 for the softer cell [26] of Fig. 1), differing only by
an enhancement factor of �3, due to the effective tem-
perature of active processes [21].

While this model accounts for the wave vector depen-
dence of the statics and the frequency dependence of the
dynamics, the absolute amplitude of the fluctuations and
the different values observed in active and ATP-depleted
cells must still be explained. One possibility is that ATP-
driven structural rearrangement in the spectrin network
[1,4,6] determines the amplitude of the largest wave-
length (and lowest frequency) fluctuations [20]. These
ATP-driven conformational changes can give rise to local
defects in the triangular spectrin network, resulting in
nodes with more or less than six spectrin bonds. The local
curvature of the cytoskeleton may change at the site of a
defect, from being locally flat (six bonds) to having a
�80 nm deviation out of the plane of the flat cytoskeleton
(fivefold node). The effect of this random (uncorrelated)
buckling is to increase the mean bilayer-rigid shell sepa-
ration by a factor of �4. According to our model, this will
increase the amplitude of the q ! 0 modes by a factor of
�44, as measured [5]. At shorter wavelengths the fluctu-
ations can be treated as in thermodynamic equilibrium,
with a higher effective temperature, as discussed above.
We indeed showed that both the statics and dynamics of
these fluctuations can be described with a unified model.
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