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Entanglement in Quantum Critical Phenomena
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Entanglement, one of the most intriguing features of quantum theory and a main resource in
quantum information science, is expected to play a crucial role also in the study of quantum phase
transitions, where it is responsible for the appearance of long-range correlations. We investigate,
through a microscopic calculation, the scaling properties of entanglement in spin chain systems,
both near and at a quantum critical point. Our results establish a precise connection between concepts of
quantum information, condensed matter physics, and quantum field theory, by showing that the
behavior of critical entanglement in spin systems is analogous to that of entropy in conformal field
theories. We explore some of the implications of this connection.
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laws of entanglement in one-dimensional spin systems,
while explicitly uncovering an accurate correspondence

tanglement between a block of L contiguous spins and the
rest of the chain, when the spin chain is in its ground state
Entanglement, or the exhibition of nonclassical corre-
lations between separate systems, has since long stood up
among the trademarks of quantum mechanics for its
nonlocal connotations [1]. Recently, its study has also
become a main goal of quantum information science
[2], where it is regarded as a resource for processing
information in novel ways. For instance, an entangled
state j�ABi of systems A and B can be used to teleport or
send quantum information [3]. Similarly, entanglement is
useful for quantum cryptography and quantum computa-
tion [4,5]. From this resource-oriented perspective, the
entropy of entanglement [6]

E��AB� � �tr��Alog2�A�; (1)

where �A denotes the state of system A, measures the
entanglement contained in j�ABi.

On the other hand, entanglement is appointed to play a
central role in the study of strongly correlated quantum
systems [7–9], since a highly entangled ground state is
at the heart of a large variety of collective quantum
phenomena. Milestone examples are the ground states
used to explain superconductivity and the fractional
quantum Hall effect, namely, the BCS ansatz [10] and
the Laughlin ansatz [11]. Ground-state entanglement is,
most promisingly, also a key factor to the understand-
ing of quantum phase transitions, where it is responsible
for the appearance of long-range correlations at zero
temperature [12]. Consequently, a gain of insight into
phenomena including, among others, Mott insulator-
superfluid transitions, quantum magnet-paramagnet tran-
sitions, and phase transitions in a Fermi liquid [13] is
expected by studying the structure of entanglement in the
corresponding underlying ground states.

In this Letter we present a computation of the ground-
state entanglement in spin chains near and at a quantum
critical point. Such a computation determines the scaling
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between critical entanglement in condensed matter sys-
tems and the entropy of the vacuum in conformal field
theories. Furthermore, such a connection can be exploited
to unveil a fundamental law for entanglement in spin
systems — namely, that quantum correlations do not in-
crease under renormalization group transformations.

More specifically, we shall analyze the entanglement in
two spin-1=2 chains, the so-called XXZ and XY models,
with corresponding Hamiltonians
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These models consider a variety of spin-spin interactions
between first neighbors as well as the effect of an external
magnetic field along the z direction, and are used to
described a large range of one-dimensional quantum
systems [13]. We recall that the HXXZ Hamiltonian for
� � 1 describes spins with antiferromagnetic isotropic
Heisenberg interaction, whereas the HXY Hamiltonian
corresponds, for � � 1, to the quantum Ising chain, and
that both Hamiltonians coincide for � � � � 0, where
they become the XX model.

Osterloh et al. [14] and Osborne and Nielsen [12] have
recently considered the entanglement in the XY spin
model, Eq. (3), in the neighborhood of a quantum phase
transition. Their analysis, focused on single-spin entro-
pies [12] and on two-spin quantum correlations [12,14],
suggestively shows that these one- and two-spin entangle-
ment measures display a peak either near or at the critical
point.

Here, alternatively, we undertake the study of the en-
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j�gi. Thus, the aim in the following is to compute the
entropy of entanglement, Eq. (1), for the state j�gi ac-
cording to bipartite partitions parametrized by L,

SL 
 �tr��Llog2�L�; (4)

where �L 
 tr 
BBL
j�gih�gj is the reduced density matrix

for BL, a block of L spins. The motivation behind the
present approach is straightforward: by considering the
entanglement SL of a spin block as a function of its size L,
and by characterizing it for large L, one expects to
capture the large-scale behavior of quantum correlations
at a critical regime.

We start off with a description of the calculations, to
then move to the analysis and discussion of the results, a
summary of which is provided by Fig. 1. The XXZmodel,
Eq. (2), can be analyzed by using the Bethe ansatz [15].
We have numerically determined the ground state j�gi of
HXXZ for a chain of up to N � 20 spins, from which SL
can be computed. We recall that in the XXZ model, and
due to level crossing, the nonanalyticity of the ground-
state energy characterizing a phase transition already
occurs for a finite chain. Correspondingly, already for a
chain of N � 20 spins it is possible to observe a distinct,
characteristic behavior of SL depending on whether the
values ��; �� in Eq. (2) belong or not to a critical regime.
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FIG. 1. Noncritical entanglement is characterized by a satu-
ration of SL as a function of the block size L: noncritical Ising
chain (empty squares), HXY�a � 1:1; � � 1�; noncritical XXZ
chain (filled squares), HXXZ�� � 2:5; � � 0�. Instead, the en-
tanglement of a block with a chain in a critical model displays
a logarithmic divergence for large L: SL � log2�L�=6 (stars) for
the critical Ising chain, HXY�a � 1; � � 1�; SL � log2�L�=3
(triangles) for the critical XX chain with no magnetic field,
HXY�a � 1; � � 0�; in a finite XXX chain of N � 20 spins
without magnetic field (diamonds), HXXZ�� � 1; � � 0�, SL
combines the critical logarithmic behavior for low L with a
finite-chain saturation effect. We have also added the lines
��c� 
cc�=6	�log2�L� � �	 [cf. Eq. (12)] both for free conformal
bosons (critical XX model) and free conformal fermions (criti-
cal Ising model) to highlight their remarkable agreement with
the numerical diagonalization.
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The XY model, Eq. (3), is an exactly solvable model
(see for instance [13]) and this allows us to consider an
infinite chain, N ! 1. The calculation of SL, as sketched
next, also uses the fact that the ground state j�gi of the
chain and the density matrices �L for blocks of spins are
Gaussian states that can be completely characterized by
means of certain correlation matrix of second moments.

For each site l of the N-spin chain, we consider two
Majorana operators, c2l and c2l�1, defined as
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Operators cm are Hermitian and obey the anticommuta-
tion relations fcm; cng � 2�mn. Hamiltonian HXY can be
diagonalized by first rewriting it in terms of these new
variables, HXY�f
�l g� ! HXY�fcmg�, and by then canoni-
cally transforming the operators cm. The expectation
value of cm when the system is in the ground state, i.e.,
hcmi 
 h�gjcmj�gi, vanishes for all m due to the Z2
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ginal Hamiltonian HXY . In turn, the expectation values
hcmcni � �mn � i�mn completely characterize j�gi, for
any other expectation value can be expressed, through
Wick’s theorem, in terms of hcmcni. Matrix � reads [16]
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with real coefficients gl given, for an infinite chain
(N ! 1), by

gl �
1

2�

Z 2�

0
d e�il 

a cos � 1� ia� sin 
ja cos � 1� ia� sin j

: (7)

From Eqs. (6) and (7) we can extract the entropy SL
of Eq. (4) as follows. First, from �, and by eliminating
the rows and columns corresponding to those spins of the
chain that do not belong to the block BL, we compute the
correlation matrix of the state �L, namely �mn � i��L�mn,
where
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Now, let V 2 SO�2L� denote an orthogonal matrix that
brings �L into a block-diagonal form [19], that is
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Then the set of 2LMajorana operators dm 

P
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n�0 Vmncn

have a block-diagonal correlation matrix hdmdni given by
�mn � i�~��L�mn. It follows that the L fermionic operators
bl 
 �d2l � id2l�1�=2, obeying fbm; bng � 0 and
fbymbng � �mn, have expectation values

hbmi � 0; hbmbni � 0; hbymbni � �mn
1� $m

2
:

(10)

That is, Eq. (10) indicates that the above fermionic modes
are in a product or uncorrelated state, �L � �L�1

m�0%m,
where %m denotes the mixed state of mode m. Therefore
the entropy of �L is simply the sum of the entropy
H2��1� $m�=2	 of each mode [here H2�x� � �xlog2x�
�1� x�log2�1� x� denotes the binary entropy] and thus
reads

SL �
XL�1

m�0

H2

�
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2

�
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Summarizing, for arbitrary values of �a; �� inHXY and
in the thermodynamic limit corresponding to an infinite
chain (N ! 1), one can evaluate Eq. (7) numerically,
diagonalize �L in Eq. (8) to obtain $m, and then evaluate
SL using Eq. (11). The computational effort involved
grows only polynomially with L and produces reliable
values for blocks with up to several tens of spins.

The general picture emerging from the above compu-
tations is that there is a clear distinction between non-
critical and critical entanglement, corresponding to two
forms of structurally inequivalent ground states.

Noncritical regime.—For all those values ��; �� and
�a; �� for which the spin chains (2) and (3) are noncritical
[13], the entropy of entanglement SL either vanishes for
all L [e.g., when a sufficiently strong magnetic field aligns
all spins into a product, unentangled state] or grows
monotonically as a function of L until it reaches a satu-
ration value for a certain block size L0.

Noncritical ground-state entanglement corresponds,
thus, to a weak, semilocal form of entanglement driven
by the appearance of a length scale L0, due, e.g., to a mass
gap in the Hamiltonian. For any L, the reduced density
matrix �L is effectively supported on just a small,
bounded subspace of the Hilbert space of the L spins.
We call such entanglement semilocal because a good
approximation to �L can be obtained by diagonalizing
the Hamiltonian corresponding to the block BL and only
a few extra neighboring spins, as skillfully exploited in
White’s density matrix renormalization group (DMRG)
techniques [20].

Critical regime.—In critical chains, on the contrary,
the entropy SL diverges logarithmically with L. Critical
ground-state entanglement corresponds to a stronger form
227902-3
of entanglement, one that embraces the system at all
length scales simultaneously.

DMRG techniques have reportedly failed to repro-
duce quantum critical behavior [21] and we may, in
view of the divergent character of SL, be in a position
to understand why. Indeed, more generally we encounter
that the support or number of relevant eigenvectors of �L
unboundedly grows with L. If, as is the case in DMRG
schemes, only a limited number of eigenvectors can be
retained, then a local computation of �L for sufficiently
large L is bound to fail from the outset (arguably, even in
an approximate sense).

An exciting, far-reaching feature of the above results is
that, for critical regimes, SL fully coincides with entropy
computations performed in conformal field theory [22].
There, a geometric or fine-grained entropy analogous to
Eq. (4) but for continuous field theories has been consid-
ered by several authors, including Srednicki [23], Callan
and Wilczek [24], Holzhey, Larsen, and Wilczek [25] and
Fiola et al. [26]. As derived in Ref. [25], in a 1� 1
conformal field theory the entropy of a subregion of
length L reads

SL �
c� 
cc
6

log2�L� � k; (12)

with a coefficient given by the holomorphic and antiho-
lomorphic central charges c and 
cc of the theory. In other
words, starting from nonrelativistic spin chain models
and by performing a microscopic analysis of a relevant
quantity in quantum information, we have obtained a
scaling law for entanglement that is in full agreement
with previous findings in the context of, say, black-hole
thermodynamics in 1� 1 dimensions [25,26].

What we encounter, however, is a clear manifestation
of universality in critical systems: the results of the
scaling limit (e.g., the logarithmic behavior of SL) are
not sensitive to the precise microscopic model being used
(interacting spins with an external magnetic field).
Scaling, instead, is dictated only by the universality class
to which the original system belongs, through the con-
formal field theory associated to the phase transition. In
the present case, the dependence of SL is only on the
central charges of the relevant theory. Thus, critical
Ising and XY (8� � 0) models correspond to a free
fermionic field theory, with central charges cf � 
ccf �
1=2, whereas the critical regimes of the XX and XXZ
models are described by a free bosonic field theory, cb �

ccb � 1 (see Fig. 1).

One may regard the above connection — between an
entanglement measure from quantum information and
the entropy of the vacuum in quantum field theories —
as conceptually satisfactory. Its practical relevance,
however, will depend on whether one can use this corre-
spondence to exchange results between the two disci-
plines. We finish by mentioning some contexts where
this exchange is possible.
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Srednicki [23] has obtained the behavior of entropy in
2� 1 (3� 1) conformal field theories. For a region R in
2 (respectively 3) spatial dimensions, the entropy of R is
proportional to the size 
�R� of its boundary,

SR � )
�R�: (13)

That is, the entropy per unit of boundary area, ) �
SR=
�R�, is independent of the size of R [in sharp
contrast with the same quantity in a 1� 1 theory,
where the boundary of a region R consists of two points
and SR=
�R� diverges logarithmically with the length L
of R, as it follows from Eq. (12)]. We can now import to,
say, spin systems. Then we have that Eq. (13) also de-
scribes the scaling behavior of critical ground-state en-
tanglement of spin lattices in two and three dimensions.

On the other hand, the coefficient in control of the
divergent behavior of SL at critical points, Eq. (12), is
the central charge, which is subject to Zamolodchikov’s c
theorem [27–29]. The c theorem states that the central
charges associated to the ultraviolet and infrared end
points of renormalization group flows, labeled by CUV

and CIR, obey the inequality CUV > CIR for unitary
theories. This powerful result establishes an irrevers-
ible arrow as renormalization group transformations
are performed. The translation of this idea to the quan-
tum information setting is that entanglement decreases
along renormalization group flows. An infrared theory
carries less global entanglement than the ultraviolet
theory where it flowed from. The c theorem seems natural
as renormalization group transformations integrate out
short distance degrees of freedom, accompanied with
their quantum correlations. Yet, it is not at all trivial
due to, first, the infinite degrees of freedom (needing
regularization) existing in a quantum field theory and,
second, the rescaling step in the renormalization group
transformation, where (possibly entangled) degrees of
freedom are introduced.

It is noteworthy, then, that entanglement in spin sys-
tems decreases both under local operations and classical
communication and along renormalization group trajec-
tories. The former case corresponds to local manipulation
of an entangled system while the second is made out of a
block-spin transformation followed by a rescaling of the
system. Both actions do reduce quantum correlations and
become irreversible [27,30].
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