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Single Spin and Chiral Glass Transition in Vector Spin Glasses in Three Dimensions
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Results of Monte Carlo simulations of XY and Heisenberg spin glass models in three dimensions
are presented. A finite-size scaling analysis of the correlation length of the spins and chiralities of
both models shows that there is a single, finite-temperature transition at which both spins and
chiralities order.
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perform a similar analysis for vector spin glass models.
Furthermore, one can calculate the correlation length for
both the spins and chirality, and so perform the same

where �l is the angle characterizing the direction of
spin Sl, and the sum is over the four bonds around the
There is now a general consensus that a spin glass
transition occurs in three-dimensional Ising spin glasses
with short range interactions at finite temperature TSG.
The most convincing work is that of Ballesteros et al. [1],
who performed a finite-size scaling analysis of the corre-
lation length, �L, in samples of different sizes L. Data
for the dimensionless ratio �L=L is found to intersect
cleanly at T � TSG, as expected at a second order phase
transition.

The situation is much less clear, however, for vector
spin glasses. Early work on XY [2,3] and Heisenberg [2,4]
models indicated a zero temperature transition, or possi-
bly a transition at a very low but nonzero temperature.
However, following the earlier work of Villain [5], which
emphasized the role of ‘‘chiralities’’ (Ising-like variables
which describe the handedness of the noncollinear spin
structures), Kawamura and Tanemura [6] proposed a
chirality transition at T � TCG�> 0�, even though the
spin glass transition temperature, TSG, is assumed to be
zero. This scenario requires that spins and chiralities
decouple at long length scales. Kawamura and collabo-
rators have given numerical evidence for this scenario
both for XY [7] and Heisenberg [8,9] models.

However, the absence of a spin glass transition in vector
spin glass models has been challenged. For the XY case,
Maucourt and Grempel [10] and, subsequently, Akino
and Kosterlitz [11] found evidence for a possible finite
TSG from zero temperature domain wall calculations.
Furthermore, by studying the dynamics of the XY spin
glass in the phase representation, Granato [12] found that
the ‘‘current-voltage’’ characteristics exhibited scaling
behavior which he interpreted as a transition in the spins
as well as the chiralities. For the Heisenberg model,
Matsubara et al. [13,14], and Nakamura and Endoh [15]
have argued that the spins and chiralities order at the
same low but finite temperature.

Since the most successful approach to demonstrate a
finite-temperature transition in the Ising case has been the
scaling of the correlation length [1], it seems useful to
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analysis for both types of ordering. Here, we present
results of these calculations for the XY and Heisenberg
models. For both models, we find a single transition for
both spins and chiralities at low but finite temperature.

We take the standard Edwards-Anderson spin glass
model,

H � �
X
hi;ji

JijSi � Sj; (1)

where the Si are n-component vectors of unit length at the
sites of a simple cubic lattice, and the Jij are nearest
neighbor interactions with zero mean and standard devia-
tion unity. We consider both the XY model (n � 2), and
the Heisenberg model (n � 3). Periodic boundary condi-
tions are applied on lattices with N � L3 spins.

The spin glass order parameter generalized to wave
vector k, q���k�, is defined to be

q���k� �
1

N

X
i

S��1�
i S��2�i eik�Ri ; (2)

where � and � are spin components, and ‘‘(1)’’ and ‘‘(2)’’
denote two identical copies of the system with the same
interactions. From this we determine the wave vector
dependent spin glass susceptibility �SG�k� by

�SG�k� � N
X
�;�

�hjq���k�j2i
av; (3)

where h� � �i denotes a thermal average and �� � �
av denotes
an average over disorder. The spin glass correlation length
is then determined [1,16] from

�L �
1

2 sin�kmin=2�

�
�SG�0�

�SG�kmin�
� 1

�
1=2
; (4)

where kmin � �2�=L��1; 0; 0�.
For the XY model, the chirality of a square is [7]

��i �
1

2
���
2

p
X0

hl;mi

sgn�Jlm� sin��l � �m�; (5)
 2003 The American Physical Society 227203-1



FIG. 1 (color online). A plot of the spin (�L) and chiral (�k
c;L

and �?c;L) correlation lengths for different sizes and tempera-
tures for the XY spin glass. The solid lines connect data for �L,
the dotted lines connect �?c;L, and the dashed lines connect �kc;L.

FIG. 2 (color online). Plot of the spin glass correlation length
�L divided by L for the XY spin glass. The data intersects at
T ’ 0:34, implying that there is a spin glass transition at this
temperature. The inset shows a scaling plot according to
Eq. (11) with TSG � 0:33 and � � 1:2.
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elementary plaquette perpendicular to the � axis and
whose ‘‘bottom left’’ corner is site i. The chiral glass
susceptibility is then given by

��
CG�k� � N�hjq�c �k�j2i
av; (6)

where the chiral overlap q�c �k� is given by

q�c �k� �
1

N

X
i

���1�
i ���2�

i eik�Ri : (7)

We define the chiral correlation lengths ��c;L by

��c;L �
1

2 sin�kmin=2�

�
�CG�0�

��
CG�kmin�

� 1

�
1=2
; (8)

in which �CG�k � 0� is independent of �. Note that ��c;L
will, in general, be different for �̂� along kmin (the x̂x
direction) and perpendicular to k. We denote these two
lengths by �kc;L and �?c;L, respectively.

For the Heisenberg spin glass, Kawamura [8] defines
the local chirality in terms of three spins on a line as
follows:

��i � Si��̂� � Si � Si��̂�: (9)

The chiral glass susceptibilities and correlation lengths
are then given in terms of the ��i by Eqs. (6)–(8), as for
the XY model.

We use parallel tempering [17,18] Monte Carlo to go
down to the low temperatures that are needed, and study
sizes from L � 4 to 12. To test for equilibration [19], we
require that the following relation [20],

�ql � qs
av �
2

z
T �U
av; (10)

valid for a Gaussian bond distribution, is satisfied. Here U
is the energy per spin, ql � �1=Nb�

P
hi;jihSi � Sji

2 is the
‘‘link overlap,’’ qs � �1=Nb�

P
hi;jih�Si � Sj�

2i where Nb �
�z=2�N is the number of nearest neighbor bonds, and
z ( � 6 here) is the lattice coordination number. We aver-
aged over 1000 samples, except for the following cases:
XY, L � 12, 601 samples; Heisenberg: L � 8, 436
samples, and L � 12, 331 samples. The number of sweeps
that each set of spins performed varied from 6000 for the
small sizes to 300 000 for L � 12.

Since �L=L is dimensionless, it has the finite-size
scaling form

�L
L

� ~XX�L1=��T � TSG�
; (11)

where � is the correlation length exponent. Note that there
is no power of L multiplying the scaling function ~XX, as
there would be for a quantity with dimensions. There are
analogous expressions for the chiral correlation lengths.
From Eq. (11), it follows that the data for �L=L different
sizes come together at T � TSG. In addition, they are also
expected to splay out again on the low-T side if there is
spin glass order below TSG.
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Next we discuss the results, starting with the XY spin
glass. Data for the various correlation lengths are shown
in Fig. 1. One sees that the chiral correlation lengths are
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smaller than the spin glass correlation length at the higher
temperatures, but increase faster on lowering T, such that,
for a given L, all the lengths become comparable at the
lowest temperatures simulated. Furthermore, the two
chiral correlation lengths (parallel and perpendicular to
k) become indistinguishable at lower T and larger sizes,
as one would expect.

The data for �L=L, shown in Fig. 2, intersects at a
well-defined temperature ’ 0:34 and splay out at lower
temperatures, which, according to Eq. (11), implies a
transition at this temperature. We find

TSG � 0:34 � 0:02 XY spin glass: (12)

Note the L � 12 data intersects at somewhat lower T,
implying that corrections to finite-size scaling may still
be significant for this range of sizes. Figure 2 provides
compelling evidence, in our view, that there is finite spin
glass transition temperature in a three-dimensional XY
spin glass, in contrast to the claim in most of the litera-
ture. The inset of Fig. 2 shows the data collapses well
according to Eq. (11) with � � 1:2� 0:2. In this paper,
error bars do not include systematic effects which are
hard to estimate. Given the lower intersection point of the
L � 12 data, it is possible that Tc could be lower than that
estimated here, in which case the value of � would be
increased perhaps to the Ising value [1] 2:15� 0:15.
FIG. 3 (color online). The main figure shows data for the
perpendicular chiral correlation length �?c;L divided by L, for
sizes 4 � L � 12 for the XY spin glass. There are intersections
at about the same temperature as that found for the spins in
Fig. 2, but evidently with some corrections to scaling. The
inset shows analogous data for the parallel chiral correlation
length, �k

c;L.
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Data for the chiral correlation lengths for the XY
model are shown in Fig. 3. Though the intersections are
not quite as clean, they occur at about the same tempera-
ture as found above for the spin glass correlation length.
For both spin and chiral correlations, they occur at a
slightly lower T for the L � 12 data. Altogether, the
evidence is good that there is a finite chiral glass tran-
sition at (or very close to) TSG. Collapsing the data, we
find the chiral correlation length exponent is �c � 1:3�
0:3, which is compatible with our estimate for the spin
correlation exponent �. Note that if the spins order then
the chiralities must also order, assuming a noncollinear
state, and so TCG � TSG.

We are not aware of any estimates of transition tem-
peratures for the XY spin glass with Gaussian couplings,
though for the �J model Kawamura and Li [7] find
TCG � 0:39� 0:03, somewhat higher than ours. Since,
for the Ising spin glass, Tc is somewhat higher for the
�J model than the Gaussian model, our estimate of Tc is
probably compatible with Kawamura and Li’s. However,
we emphasize that, in contrast to them, we find simulta-
neous ordering of the spins and chiralities.

Next, we go on to our results for the Heisenberg spin
glass. As for the XY model, the spin glass correlation
length is larger at higher temperatures but the chiral
correlation length grows faster and is comparable to the
spin correlation length at the lowest temperatures.
Figure 4 shows data for �L=L, which intersect at a com-
mon temperature indicating a finite spin glass transition
temperature TSG which we estimate to be
FIG. 4 (color online). Data for the spin glass correlation
length �L, divided by L for the Heisenberg spin glass. The
intersections imply that TSG ’ 0:16. The inset shows a scaling
plot according to Eq. (11) with TSG � 0:16 and � � 1:1.
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FIG. 5 (color online). The main figure shows data for the
parallel chiral correlation length �?

c;L divided by L for the
Heisenberg spin glass. There is an intersection at T ’ 0:14,
close to that found for the spin glass correlation length �L in
Fig. 4. The inset shows analogous data for the perpendicular
chiral correlation length, The data intersect but not as cleanly
as for �?c;L or �L.
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TSG � 0:16 � 0:02 Heisenberg spin glass: (13)

The inset of Fig. 4 shows the data collapses quite well
according to Eq. (11) with � � 1:1� 0:2.

Figure 5 shows that the data for the chiral correlation
lengths indicate a transition at about the same value, with
the intersections being cleaner for the parallel than for
the perpendicular correlation length. Our estimate for the
chiral correlation length exponent is �c � 1:3� 0:3. As
for the XY spin glass, Tc may be somewhat lower than that
found here, which would lead to a larger value of �.

Our value for the transition temperature agrees well
with values of TCG given by Kawamura [8], 0:157� 0:01,
and Hukushima and Kawamura [9], 0:160� 0:005,
though, unlike those authors, we claim that the spins, as
well as the chiralities, order at this temperature. For the
�J model, Endoh et al. [14] find a spin glass transition at
TSG � 0:19� 0:02 while Nakamura and Endoh [15] find
both chiral and spin glass ordering for T ’ 0:21.

In conclusion, by analyzing data for the spin and chiral
correlation lengths, we have argued that there is a single
phase transition, at which both spins and chiralities order,
in the XY and Heisenberg spin glasses in three dimen-
sions. In our view, the evidence for a spin glass transition
is at least as strong as that for a chiral glass transition.
Spin-chirality decoupling does not seem to occur. The
present work used quite modest work station facilities, so
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it would be feasible to extend these results to larger sizes
by a major computational effort.

Why has this simple picture of a single finite-
temperature transition in vector spin glasses in three
dimensions not been generally accepted before? One rea-
son is that TSG is very low compared with the mean field
value TMF

SG ( ’ 1:22 for XY and 0.82 for Heisenberg). Until
the advent of parallel tempering [17], it was difficult to
reach the actual TSG in simulations. Furthermore, the
commonly used Binder ratio does not seem to be very
useful [21] for vector spins, and T � 0 domain wall
calculations are plagued by uncertainties over the opti-
mal choice of boundary conditions [11]. We argue that, as
for the Ising spin glass [1], finite-size scaling of the
correlation length is the optimal technique to use.
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