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The dynamical properties of strongly coupled charged-particle bilayers are investigated by molecular
dynamics (MD) simulation and theoretical analysis. The spectra of the current correlation functions
show the existence of two (in-phase and out-of-phase) longitudinal and two (in-phase and out-of-phase)
transverse collective modes. The out-of-phase modes possess finite frequencies at wave numbers k! 0,
confirming the existence of the predicted long-wavelength energy gap in the bilayer system. A
theoretical model based on an extended Feynman ansatz for the dynamical structure functions provides
predictions on the strength of the collective modes that are verified by the MD experiment.
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relations. This classical simulation is also expected to
reasonably well describe the qualitative features of col-

�

with the static S�k� obtained independently in our earlier
work [10], the latter with the value required by the second
Strongly coupled charged-particle bilayers are relevant
to supercooled ions in particle traps [1], semiconductor
devices [2], and laboratory complex plasmas [3]. The
dynamical properties of strongly coupled bilayers have
been studied theoretically with the aid of the quasi-
localized charge approximation (QLCA) [4]. The QLCA
analysis has shown the existence of four distinct collec-
tive excitations [5]: the longitudinal in-phase and out-of-
phase (particles in the two layers oscillating in phase and
180� out of phase, respectively) plasmon modes and the
transverse in-phase and out-of-phase shear modes. The
in-phase modes emulate a 2D behavior while the out-of-
phase modes exhibit qualitatively new features. It has
been predicted on the basis of the QLC theory that, in
sharp contrast to the results of the RPA description where
the long-wavelength out-of-phase plasmon is acoustic [6],
this excitation exhibits a nonzero frequency at wave
numbers k! 0 [5]. New theoretical work [7] has ad-
dressed the questions of the structure of S�k; !�, the dy-
namical structure function and the related issue of the
spectral weight of the collective excitations. Experiments
on the dispersion of the out-of-phase plasmon have been
carried out in the low-coupling, high layer separation
regime [2] (for a critical evaluation see also Ref. [8]).
The possible relationship between these experimental
findings, recent theoretical predictions, and the present
molecular dynamics (MD) simulations will be discussed
below.

In this Letter we report on MD calculation for bilayers
in the strongly coupled liquid phase. Our goal here is to
generate MD data for the dynamical structure functions
and for the longitudinal and transverse current correla-
tion functions, together with their companion dispersion
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lective excitations of the strongly coupled bilayer in the
quantum domain.

Our calculations are based on a P3M (particle-particle
particle-mesh) [9] molecular dynamics code, used earlier
to investigate the static properties of the system [10].
The number of particles is set to N � 1600 in both layers,
and periodic boundary conditions are applied to the
simulation squares having an edge length D. The bilayer
is isomorphic to a binary liquid with interaction poten-
tials 	11�r� � 	22�r� � e2=r and 	12�r� � 	21�r� �
e2=

����������������
r2 � d2

p
and is characterized by the coupling coef-

ficient � � e2=�akT� and the layer separation d � d=a,
where a � 1=

�������
n�

p
is the Wigner-Seitz radius, and n is the

areal density.
Analyzing the dynamics of particles situated in

layers m � 1; 2, data for ��m��k; t� � k
P
iv

�m�
ix �

exp	ikx�m�i 
, ��m��k; t� � k
P
iv

�m�
iy exp	ikx�m�i 
, and

��m��k; t� �
P
i exp	ikx

�m�
i 
 are stored for a series of

wave numbers, multiples of kmin � 2�=D. (We assume
that k is directed along the x axis.) Correlation functions
of longitudinal (Lij) and transverse (Tij) current fluctua-
tions and of density fluctuations (Sij) are obtained
through Fourier transforms of ��k; t�, ��k; t�, and ��k; t�
[11,12]. The spectra are diagonalized by rotating them
into a � coordinate system, e.g., L��k;!� � L11 � L12

and L��k;!� � L11 � L12.
Most of our calculations have been carried out for � �

40 and 60, and layer separations in the 0:1 
 d 
 5 range.
Figure 1 shows a series of representative longitudinal (L�

and L�) and transverse (T� and T�) current and density
(S�) fluctuation spectra. In order to test the reliability of
computation, we have calculated the zeroth and second
frequency moments of S �k;!�. The former is compared
 2003 The American Physical Society 226804-1



FIG. 2. (a) Dispersion relations for the four modes, at � � 40
and d � 0:3; (b) energy gap !�k � 0�=!0 as a function of d;
the inset portrays the high d behavior; (c) dispersion of the L�

mode for d � 0:8–5:0. All data are compared with the results of
the QLCA calculations [5]; (a) also shows the results of the RPA
calculations.

FIG. 1. Spectra of longitudinal L��k;!� (a),(b) and trans-
verse current T��k;!� (c),(d) fluctuations at d � 0:3;
(e) S��k;!� spectra for d � 0:3–5; the inset illustrates the
satisfaction of the second frequency moment sum rule; I�k� �R
!2S�k;!�d!. � � 60 for (a)–(d); � � 40 for (e). !0 ������������������������
2�e2n=ma

p
is the nominal 2D plasma frequency.
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frequency moment sum rule, ��n=m��k2 (where k � ka
and � � 1=kBT) [see inset in Fig. 1(e) showing excellent
agreement]. The analysis of the correlation spectra con-
firms the existence of all four predicted collective modes.
The full dispersion relations !�k� at � � 40 and layer
separation d � 0:3 are plotted in Fig. 2(a). Both the
longitudinal and transverse out-of-phase modes (L�,
T �) show a weak dependence on the wave number k.
As k! 0 these modes exhibit a finite frequency !�0� �

0. This can also be observed in the positions of the peaks
of the spectra in Figs. 1(b) and 1(d). This behavior pro-
vides unambiguous evidence for the presence of the pre-
dicted [5] energy gap in the out-of-phase mode spectrum
of a strongly coupled bilayer.

In contrast, for the in-phase longitudinal mode (L�)!
shifts to 0 as k! 0, as expected on the basis of the RPA
dispersion of this mode, which is quasiacoustic !=!0 ������
2k

p
�1� k d =2� 3k=4��; !0 �

�����������������������
2�e2n=ma

p
. The

QLCA predicts a further O�k� correction due to correla-
tions [5,6]; our data clearly confirm this deviation. The in-
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phase transverse (T �) mode is similar to the corre-
sponding mode in the isolated 2D system: for � � 40 it
is quite weak and it is observable only at k � 1; for k 
 1,
! � 0. The disappearance of the shear modes for k! 0
is a well-known feature of the liquid state [11,13,14]
while the sharp cutoff !! 0 for a finite k has also
been observed in the case of Yukawa systems [15,16].
Comparison with the QLC theory shows an agreement
as far as the linear acoustic dispersion is concerned, but
the QLCA fails to predict the finite-k, ! � 0 cutoff.

To see the effect of layer separation, the S� spectra at
fixed k and the energy gap as functions of d are shown in
Figs. 1(e) and 2(b), respectively. The values of ! at k! 0
for the L� and T � modes are coincident, as expected,
226804-2



FIG. 3. (a) Qualitative picture for the k dependences of the
strengths of the central and the collective peaks; (b) collective
peak strengths q� (squares) and q� (circles), and (c) central
peak strengths p� (squares) and p� (circles) as functions of k.
Filled symbols: � � 60, open symbols: � � 40. Best fits for the
coefficients Q�1�

� and Q�2�
� in q�, and for P�0�

� and P�1�
� in p� are

displayed. For q� and p� the best fits for the power behavior of
k are displayed. The insets show the � dependences.
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and show a decreasing tendency with increasing layer
separation. At layer separations d! 0, !�k � 0�=!0 �
1:43. Comparison with the QLCA gap formula [5] using
pair correlation functions obtained from hypernetted-
chain [5] and MD [10] calculations shows that the theo-
retical results are in good agreement with the MD data
except that at small layer separations the latter is roughly
30% higher than the theoretical value. With increasing
layer separation the energy gap value obtained from the
simulations decreases faster than the QLC prediction,
ultimately dropping below it (to 0.35) around d � 1.

Focusing now further on the longitudinal (L�) mode
for d � 1:5, it is seen in Fig. 2(c) that the ! > 0 portion
of the dispersion curve following the energy gap is linear.
It is in this domain that the mode bears a close resem-
blance to the behavior predicted by the RPA. The slope of
this quasilinear portion is reduced by 66% (at d � 1:5) to
39% (at d � 5) from its RPA value due to the strong
particle correlations.

The widths of the peaks in the fluctuation spectra are
indicative of the lifetimes of the corresponding modes.
L� is maintained primarily by the mean field: it is
characterized by a long lifetime and an extremely narrow
peak in the corresponding L��!� spectrum. In contrast,
T � and T � are supported by particle correlations, have
shorter lifetimes, and are characterized by broader peaks
in the T��!� and T��!� spectra. As to the peak of L��!�,
it is broad in the domain dominated by correlations, in
particular, in the gap region; it narrows dramatically,
however, as it travels into the quasilinear region that is
primarily maintained by the mean field [see Fig. 1(e)].

Our examination of the weaker coupling behavior in-
dicates that the energy gap does survive even down to the
� � 5 value; for �< 5 the corresponding peak becomes
swamped by the continuum noise.

In order to analyze the features of the S��k;!� struc-
ture functions we represent the ! dependence in terms of
a Feynman-type ansatz:

S��k;!� � ��2p��k�%�!� � q��k�f%	!�!��k�


� %	!�!��k�
g�: (1)

The difference between Eq. (1) and the conventional
Feynman representation resides in the zero frequency
term. The introduction of this term is motivated by the
observation that in multicomponent systems the hydro-
dynamic diffusion dominates the low frequency behavior
and proper inclusion of this feature in S�k;!� is indis-
pensable. In contrast, in a single component plasma the
central diffusion peak is suppressed at k! 0 [10,11].

With the combination of (1) with compressibility sum
rules specific to bilayers [7], one can establish precise
statements in the k! 0 limit on the integrated strengths
both of the collective and of the central peaks over the
entire 0< T <1 quantum to classical temperature
range. Here we quote the classical limit. Each of the six
226804-3
peaks exhibits its own characteristic k dependence, as
shown in Fig. 3(a). The leading coefficients to O�k2� can
be calculated in terms of the intralayer (L) and interlayer
(N) inverse compressibilities [the additional factors '�

and g are of O�1�, and their precise values are of no
interest here]:

P�0�
� �

1

L� N � 2�d
; P�1�

� �
�d2

	L� N � 2�d
2
;

Q�2�
� �

1

2�g2
; P�2�

� � 	3� �L� N� � 2�'�

1

16�2 ;

Q�1�
� �

1

4�
; Q�2�

� � 	3� 2�'� � 2�d

1

16�2 : (2)

We have performed a detailed MD analysis of the
behavior of the central and collective peaks, focusing
on verifying the predicted k and � dependences of the
respective leading terms. The integration over the collec-
tive peak areas was carried out without difficulty, since
226804-3
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these peaks detach themselves sharply from the back-
ground. The central peaks are more diffuse, rendering
the evaluation more difficult.

Figure 3(b) displays the results for the two collective
peaks, q� and q�. Both the theoretically required power
behaviors (k and k2, respectively) and the inverse propor-
tionality to � are verified. In addition,Q�1�

� has the correct
value given by Eq. (2); Q�2�

� is, however, lower possibly
because of damping effects. The analysis of p� and p�
[Fig. 3(c)] is more difficult because comparison with the
theoretical values is hindered by the more complex �
dependences through L and N, as predicted by Eq. (2).
Nevertheless, the expected k behaviors are well demon-
strated. For large � values L and N are proportional to �
[7]: thus an overall inverse proportionality with � is
expected. This is also borne out in Fig. 3(c). For p� we
exploited the fact that P�0�

� is identical to the static struc-
ture function S��k � 0� [7] and that P�1�

� is expressible in
terms of P�0�

� . Borrowing the value of S��k � 0� from our
earlier static simulation data [17], we have found reason-
able numerical agreement between theoretically calcu-
lated and measured values of the coefficients, as
indicated in Fig. 3(c).

The work of [18] suggested that the energy gap is only
an artifice of the approximation used (QLCA) and the
damping effects render its oscillator strength vanishingly
small. The results presented here clearly show that this is
not the case. The MD experiment that obviously includes
all damping effects demonstrates that the gapped mode
prevails as a well-defined and identifiable collective ex-
citation of the system. From the theoretical side it is seen
that while it is true that the strength of the collective peak
in S��k;!� is down by a factor of k, as compared to the
collective peak of S��k;!�, this is a feature that would be
shared by any competing pair of optic and acoustic or
quasiacoustic excitations and is due merely to the differ-
ent densities of states associated with the two modes.

In summary, we have presented MD simulation results
for charge and current fluctuation spectra for a charged-
particle bilayer liquid over a wide range of coupling and
layer separation values. The dynamical structure function
data well satisfy the required sum rules.

We have identified the four collective modes of the
system and determined their dispersion characteristics:
the existence of the predicted [5] frequency (energy) gap
in the out-of-phase modes has been unambiguously estab-
lished. The MD results on the mode dispersion well
complement the existing experimental findings [2,8] in
laboratory experiments: these latter were carried out for
rs � 1:0–1:5, equivalent to a much weaker coupling
range than that investigated here. The high d, finite-k
region accessed by the experiments can be identified
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with the quasilinear portion of the high d dispersion
curves in Fig. 2(c).

We have shown that the extended Feynman ansatz
[Eq. (1)] provides a precise analytical determination of
the long-wavelength behavior of the collective and! � 0
peaks of S�k;!�. We have measured the strengths of the
respective peaks in the MD simulation and have demon-
strated that they conform with the theoretical predictions
based on this model.
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