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Scattering in the Attractive Yukawa Potential in the Limit of Strong Interaction
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Scattering in the attractive screened Coulomb (Yukawa) potential in the limit of strong interaction is
investigated. It is shown that the scattering occurs mostly with large angles. The corresponding
momentum-transfer cross section is calculated. The results are applied to estimate the ion drag force
acting on an isolated micron-sized grain in low-pressure bulk plasmas.
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Using Eqs. (1)–(4), the momentum-transfer cross sec- � * 1. In this case the interaction range exceeds the
The screened Coulomb (Debye-Hückel or Yukawa) po-
tential is widely used in physics, being a good approxi-
mation to describe interaction between charged particles
in (dusty/complex) plasmas, colloidal suspensions, etc. In
this Letter we report an analytical approach (based on our
numerical calculations) to obtain the momentum-transfer
cross section for pair collisions of particles interacting
via the attractive Yukawa potential. We consider the limit
when interaction is so strong that the scattering is mostly
with large angles. This limit is opposite to the well-
known theory of Coulomb scattering and is of interest
when (at least) one of the particles is highly charged and/
or their relative velocity is small. As an example we apply
the obtained results to estimate the ion drag force acting
on a negatively charged micrograin in a bulk plasma.

Let us consider collision between two particles of
masses m1 and m2 interacting via isotropic potential
U�r�. This problem is equivalent to the scattering of a
single particle of reduced mass, m � m1m2=�m1 �m2�,
in a field U�r� (whose center is at the center of masses).
First, we study the case of pointlike particles; the role of
finite sizes is addressed later. Introducing the relative
velocity, v, and the impact parameter, �, we get the
deflection angle, ���� � j� � 2’���j, where [1]

’��� � �
Z 1

r0

dr

r2
�����������������������������
1� Ueff�r; ��

p : (1)

Here Ueff is the effective potential energy (normalized by
the kinetic energy, 1

2mv2),

Ueff�r; �� � �2=r2 � 2U�r�=mv2: (2)

The scattering momentum-transfer cross section is given
by

s � 2�
Z 1

0
�1� cos����	�d�: (3)

Integration in (1) is performed from the distance of the
closest approach, r0��� — the largest root of the equation

Ueff�r; �� � 1: (4)
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tion s can be in general calculated for arbitrary poten-
tial U�r�.

For the Yukawa potential, U�r� � ��U0=r�e�r=�

(where � is the screening length and U0 is positive for
attraction), the following important parameter can be
introduced:

��v� � U0=mv2�; (5)

which is the ratio of the Coulomb radius, rC � U0=mv2,
to the screening length �. Normalizing r and � by the
screening length, we get that � is the only parameter
the function Ueff�r; �� depends on. The same applies for
the deflection angle ���� [see Eq. (1)]. Therefore, we
conclude from Eq. (3) that s=�

2 depends only on �
and, hence, Eq. (5) defines a unique parameter which
describes scattering for Yukawa interaction.

The standard Coulomb scattering approach (Coulomb
potential with cutoff at � � �) which is widely used to
describe collisions in usual electron-ion plasma deals
with the situation � 
 1. For example, for electron-ion
collisions in an isotropic plasma ��vTe

� � e2=Te��

N�1
D 
 1 (where vTe

�
��������������
Te=me

p
is the thermal velocity

of electrons, � is plasma Debye length, and ND is a
number of electrons inside the Debye sphere). In this
case the interaction can be called ‘‘weak,’’ in the sense
that its range —the Coulomb radius rC � e2=Te — is
much smaller than the screening length �. The ratio of
the momentum transfer by the electrons with rC < � < �
to that with � < rC is approximately equal to the so-
called Coulomb logarithm, � � ln�1=�� � 1. The rela-
tive contribution of electrons with � > � is small, ���1,
because of the screening [2]. Therefore, the momentum
transfer is mostly associated with the scattering in the
bare Coulomb potential. This justifies the standard
Coulomb scattering approach in the limit � 
 1. Most
of the contribution to the momentum transfer in this case
is due to small angle scattering (the electrons are de-
flected strongly only if � & rC).

The standard Coulomb scattering approach fails when
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screening length and deflection can be strong even if
� > �. It was shown recently [3] that the extension of
the standard Coulomb scattering theory is possible by
taking into account collisions with impact parameters
above �. This basically leads to modification of the
Coulomb logarithm. Although the approach of [3] is not
rigorous, it shows very good agreement with the earlier
numerical results of Refs. [4,5] up to � ’ 5.

In this Letter we study the case � � 1 (strong inter-
action). This limit is opposite to the standard Coulomb
scattering theory and requires a new physical approach
which is formulated below. We start with a brief descrip-
tion of radial motion of particles interacting via the
attractive Yukawa potential in terms of the effective po-
tential energy [5,6]. For nonzero impact parameters
Ueff�r; �� has the following asymptotes: limr!0Ueff � 1
and limr!1Ueff � 0. Therefore, Eq. (4), which deter-
mines the distance of the closest approach, r0���, always
has at least one solution. However, the analysis shows that
Ueff does not decrease monotonically with r but can
deliver local maximum and minimum, so that Eq. (4)
can have multiple roots (two or three) for certain con-
ditions. Physically, this means that the potential barrier
emerges and then the largest root of Eq. (4) must be
chosen for r0���. For � < �cr ’ 13:2 there is no barrier
for any � [5] and the particles can approach close to each
other (single root, r0 < �, ‘‘close collisions’’). For � >
�cr there exists a critical (transitional) impact parameter,
�����, separating trajectories in two groups: no barrier
for � < ��, but for � > �� the barrier emerges and the
particles are reflected at much farther distances (three
roots, r0, significantly exceed �, ‘‘far collisions’’). This
causes a discontinuity at the curve r0��� at � � �� [3]
(two roots, ‘‘transition collision’’). This also implies a
singularity at � � �� for the dependence of the scatter-
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FIG. 1. Particle trajectories during collisions for different
impact parameters, �. Interaction is via the attractive Yukawa
potential. A unique parameter characterizing the scattering, �,
is equal to 30. Impact parameters are chosen to be below, about,
and above the transitional impact parameter, �� ’ 4:24�.
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ing angle � on �: In the vicinity of maximum of Ueff

we have an expansion: �1� Ueff�j�!��
/ �r � rmax�

2 �
O�r � rmax�

3, where rmax is the location of the maximum.
In accordance with Eq. (1) this causes a logarithmic
divergency of the scattering angle at � � ��, which is
illustrated in Figs. 1 and 2. Thus, the existence of the
potential barrier at � > �cr and the discontinuities it
induces play a crucial role for the analysis of collisions.

The appearance of the potential barrier and the lo-
cation of its maximum (i.e., �� and rmax) are deter-
mined by three conditions [5]: (i) Ueff�rmax; ��� � 1;
(ii) U0

eff�rmax; ��� � 0; (iii) U00
eff�rmax; ���< 0, where

primes denote derivatives with respect to r. All three
conditions can be satisfied simultaneously only for
� � �cr ’ 13:2. The maximum, rmax���, is the solu-
tion of the transcendent equation �rmax=��e

rmax=� �
��rmax=� � 1�. It grows with � monotonically, starting
from rmax��cr�=� � �1�

���
5

p
�=2 ’ 1:62. Conditions (i)

and (ii) determine the transitional impact parameter,
��, as a function of rmax (and thus of �),

�� � rmax

������������������������
rmax=�� 1

rmax=�� 1

s
; (6)

which also increases, starting from ����cr�=� ’ 3:33. For
large � we obtain the asymptotic solutions: rmax=� ’
ln�� ln�1� and ��=� ’ ln�� 1� 1

2 ln
�1�.

We integrated Eqs. (1) and (3) numerically and ob-
tained the scattering angle and momentum-transfer cross
section for various � > �cr. The dependence of the scat-
tering angle on the impact parameter shown in Fig. 2 has
the following features: For close collisions we have
� ! � at � ! 0, and ���� grows monotonically until
� � ��, where it diverges; for far collisions the scattering
angle decreases very fast, due to exponential screening of
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FIG. 2 (color). Scattering angle � versus the normalized
impact parameter �=�� (�� is the transitional impact parame-
ter). The numerical calculations are for four different scattering
parameters �.
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FIG. 3. Momentum-transfer cross section, s, normalized to
the squared screening length, �2, versus the scattering parame-
ter, �. Our numerical calculation (�) and earlier numerical
results by Hahn et al. [4] (�) are shown. The analytical ex-
pression [Eq. (7), solid line] fits quite well the numerical
calculations for � > �cr. The analytical formula proposed in
Ref. [3] agrees well with the numerical results for � & 5. The
dotted line represents the standard Coulomb scattering theory.
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the interaction potential. It is convenient to consider the
contribution of close and far collisions to the momentum-
transfer cross section separately.

Close collisions (� < ��).—As can be seen from Fig. 2,
the behavior of � as a function of the normalized im-
pact parameter �=�� is practically independent of � for
� < ��. This self-similarity, which is one of our most
important findings, allows us to present this contribution
to the cross section in the form close

s ’ A��2
�, where

A � 2
R
1
0�1� cos����	�d� and � � �=��. The coeffi-

cient A can be determined by direct numerical integra-
tion. We found that A � 0:81� 0:01 for all � in the
range �cr � � � 500.

Far collisions (� > ��).—Contribution of far colli-
sions to the cross section can be estimated in the fol-
lowing way. The scattering angle decays rapidly in
the vicinity of ��, as � � �1=2

������
��

p
� ln�1=��� ���	,

so that the range �� �� for the large angle scattering
is / e�2

����
��

p
. Therefore, the contribution of the large angle

scattering, / ��e�2
����
��

p
, vanishes rapidly as � grows (see

also Fig. 2). Then the small angle approximation is appli-
cable, yielding far

s ���=�2 � const� O�ln�1��. This
functional dependence is in agreement with numerically
found far

s ���=�2 ’ 6:4�1� 2:0ln�1��. Note that the ratio
far

s =close
s decreases with �: It is �0:3 for � � �cr and

tends to zero as / ln�2�.
Combining the contribution from close and far colli-

sions, we can write the momentum-transfer cross section
in the form

s��� ’ A��2
���� �B�2�1� 2:0ln�1��; (7)

where A ’ 0:81, B ’ 6:4, and �� ’ ��ln� � 1�
1
2 ln

�1��. This expression is valid for � � �cr and point-
like particles. Figure 3 demonstrates very good agree-
ment between Eq. (7) and numerical calculations. Here we
also show an analytical approximation obtained earlier
by Khrapak et al. valid for � & 5 [3]. Note that the
standard Coulomb scattering theory yielding s �
2��2�2 ln�1� 1=�2�, underestimates the cross section
significantly for � * 1.

Now let us study the collision of two (spherical) par-
ticles interacting via the attractive Yukawa potential and
having finite radii (a1 and a2). This problem is equivalent
to the scattering of a pointlike particle at the center of
radius a � a1 � a2. In contrast to the case of pointlike
particles, when the scattering is described by the single
parameter �, now we have a second parameter, a=�. This
implies the following difference: If the distance of the
closest approach, r0 [calculated from Eq. (4)], is smaller
than a, then the direct collision takes place. In this case
we assume an agglomeration; i.e., the pointlike particle is
collected (absorbed) by the center. Collection occurs if
the particle has an impact parameter smaller than the so-
called ‘‘collection radius,’’ �c. If �c < ��, then Eq. (4)
has a single root and the orbital motion limited (OML)
theory can be applied yielding
225002-3
�c � a
���������������������������������
1� 2U�a�=mv2

q
� a

���������������������������������������
1� 2���=a�e�a=�

q
� �OML

c : (8)

At very large �, however, �OML
c exceeds the transitional

impact parameter, �� ’ � ln�. That means that the OML
approach is no longer applicable because for particles
having � � �� Eq. (4) has multiple roots. These particles
experience far collisions, with r0 considerably larger than
� and therefore are not absorbed (we assume a & �). Thus
the absorption radius for very large � equals the transi-
tional impact parameter: �c � ��.

The total momentum-transfer cross section for the case
of finite size particles consists of collection and scattering
parts: � � c � ~s. Collection formally corresponds to
the scattering angle � � �=2, yielding c � ��2

c . The
scattering part ~s is given now by Eq. (3), with the lower
limit of integration replaced by �c. The dependence
���� is shown in Fig. 4 for different values of a=�.
For pointlike particles (a=� � 0, solid line) the total
cross section is determined by Eq. (7). Collection is not
important when 2��a=�� 
 ln2� (i.e., �c 
 ��).
Therefore, for finite but relatively small particles (a=� &

10�2) we have � ’ s in the considered range of �; i.e.,
the momentum transfer is mostly associated with the
elastic scattering. For larger particles collection becomes
more important: One can see from Fig. 4 that the mo-
mentum transfer can decrease or increase (in comparison
with the case of a pointlike particle), depending on the
value of �. For sufficiently large � (when �c � ��) the
total cross section is � � ��2

� � far
s (dotted line).

At � ! 1 the contribution of elastic (far) collisions
225002-3
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FIG. 4. The total momentum-transfer cross section, �, nor-
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vanishes (the momentum transfer is entirely associated
with the collection) and � tends to ��2

�; i.e., � is
asymptotically A�1 ’ 1:23 times larger than s.
Hence, the momentum transfer is not very sensitive to
the particle size — the deviation of � from s does not
exceed �50%. This allows us to draw a very impor-
tant conclusion that for practical purposes the total
momentum-transfer cross section can be quite well ap-
proximated by � � ��2

�.
Finally, we apply the obtained results to estimate the

ion drag force acting on an isolated �m-size grain in a
bulk low-pressure plasma. This force is associated with
the momentum transfer due to the relative ion drift and
determines various important processes in complex
(dusty) plasmas [3,7–12]. We restrict ourselves to the
situation of subthermal relative drift, u 
 vTi

, which
corresponds to a slow grain motion and/or the ion drift
in a weak electric field. Even a weak plasma anisot-
ropy induced by the drift can cause the deviation of the
grain potential from the Yukawa form: The potential
does not fall off exponentially at very large distances,
r � �, but exhibits / r�3 asymptotic behavior [13,14].
In addition, the plasma absorption on a grain can cause
a / r�2 asymptote at large r [7]. However, in Ref. [5]
it was shown that this deviation does not affect substan-
tially the momentum-transfer cross section. Therefore,
for our problem the attractive Yukawa interaction poten-
tial between positive ions and a negatively charged grain
is a good approximation. The interaction is character-
ized by U0 � ej�sjaea=� (where �s < 0 is the grain
surface potential). The plasma screening is mostly asso-
ciated with ions, � ’ �Di �

����������������������
Ti=4�e2ni

p
, provided the

electron-to-ion temperature ratio � � Te=Ti is large.
The calculation of the ion drag force FI involves the

integration of the momentum-transfer cross section
225002-4
over the ion velocity distribution (shifted Maxwellian
distribution in our case) [3]. The major contribution to
the momentum transfer comes from the region v � vTi

[the contribution from small velocities vanishes since the
cross section has a weak (logarithmic) dependence on
velocity; high velocities are not important due to the
exponential factor in the velocity distribution]. There-
fore, the characteristic value of � is given by ��vTi

�.
To get a simple estimation of FI we assume ��
��2

�, where �� � � ln��vTi
�. Then we obtain FI �

��2
��vTi

�niTiu=vTi
(the exact integration gives a prefactor

of about 2). Hence, the ion drag force is proportional to
T3=2

i m1=2
i but depends only logarithmically on a, ni, and �.

Let us define the range of parameters where our esti-
mation of the ion drag is valid. We take typical bulk
plasma parameters: Ar gas, Ti � 0:025 eV, � � 100,
ne � ni � 109 cm�3. This gives ��vTi

� ’ 6a (where a is
in �m) as long as a < �D, which is the usual situation in
complex (dusty) plasmas. Then the inequality ��vTi

� >
�cr ’ 13:2 can be easily satisfied for grains of a few
microns. In this case, the results obtained for � 
 1 [8]
and � & 5 [3] are not applicable, but the expression
derived in this Letter should be used instead. Our model
also assumes ‘‘isolated’’ dust grain and ‘‘collisionless’’
ions. This means that the average interparticle distance
and the ion mean free path both exceed the characteristic
interaction length (� ��). For the chosen parameters we
have ����cr� ’ 100 �m, which gives the pressure range
p & 20 Pa.

In conclusion, the scattering in the attractive screened
Coulomb (Yukawa) potential was studied in the limit of
strong interaction (interaction radius is larger than the
screening length).We derived an analytical expression for
the momentum-transfer cross section and applied it to
estimate the ion drag force in complex (dusty) plasmas.
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