
P H Y S I C A L R E V I E W L E T T E R S week ending
6 JUNE 2003VOLUME 90, NUMBER 22
Energy Density Functional Approach to Superfluid Nuclei
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We show that, within the framework of a simple local nuclear energy density functional (EDF), one
can describe accurately the one- and two-nucleon separation energies of semimagic nuclei.While for the
normal part of the EDF we use previously suggested parametrizations, for the superfluid part of the
EDF we use the simplest possible local form compatible with known nuclear symmetries.
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ample is perhaps the work of Refs. [11,12], which so far
are the leaders in describing all known nuclear masses.

are known to be of rather small amplitude, we shall
consider only a superfluid EDF ES�r� of the following
A steady transition has taken place during the past
several years from the mean-field description of nuclear
properties in terms of effective forces to an energy density
functional (EDF) approach. A significant role is played in
this transition process by the fact that an EDF approach
has a strong theoretical underpinning [1]. The effective
forces used to derive the EDF are nothing more than a
vehicle, since in themselves they have no well-defined
physical meaning. For example, the effective Skyrme
two-particle interaction is neither a particle-hole nor a
particle-particle interaction. The particle-hole interaction
(or the Landau parameters) is defined only as the second
order functional derivative of the total EDF with respect
to various densities, while the particle-particle interac-
tion responsible for the pairing correlations in nuclei has
to be supplied independently and with no logical con-
nection to the Skyrme parameters.

We shall not attempt to even mention various mean-
field approaches suggested thus far (in this respect, see
Ref. [2]), but we shall concentrate instead on a single
aspect of the nuclear EDF, namely, its pairing proper-
ties. Only recently has it become clear that a theoretically
consistent local EDF formulation of the nuclear pairing
properties is indeed possible [3–5]. Even though the cru-
cial role of the pairing phenomena in nuclei has been es-
tablished firmly, it is surprising to realize how poor the
quality of our knowledge still is. Phenomenologically, one
cannot unambiguously decide whether the pairing corre-
lations in nuclei have a volume and/or a surface character
[6–13]. The isospin character of the nuclear pairing cor-
relations requires further clarification as well. These
questions become even sharper in the language of a lo-
cal EDF.

There is also the largely practical issue of whether one
should use a zero-range or a finite-range effective pairing
interaction. The only reason for the introduction of a
finite range was to resolve the formal difficulty with
divergences in calculating the anomalous densities [10].
The majority of practitioners favor a much simpler ap-
proach, which embodies essentially the same physics, the
introduction of an explicit energy cutoff. The best ex-
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An explicit finite range of the pairing interaction r0
(which can be translated into an energy cutoff Ec �
�h2=mr20) and a zero range with an explicit energy cutoff
Ec in the final analysis are equivalent. Both approaches,
however, are a poor man’s solution to the renormalization
problem and reflect simply a lack of understanding of the
role of high momenta in the pairing channel. Neither the
energy cutoff Ec nor the finite range of the interaction r0
carry any physical information and they are simply
means towards getting rid of infinities. The argument
that nuclear forces have a finite range is superfluous (see
Refs. [3–5]) since nuclear pairing phenomena are mani-
fest at small energies and distances of the order of the
coherence length, which is larger than nuclear radii.

We shall consider local nuclear EDFs only (which
depend on various densities, as opposed to an explicit
dependence on the full density matrix), as they proved
overwhelmingly successful in describing normal nuclear
properties. It is natural to expect that the same should
apply to pairing properties. According to the general
theorem of Hohenberg and Kohn [1], for many fermion
systems there exists a universal EDF. Unfortunately, there
are no hints on how to derive such a functional. In the
case of nucleons, such a functional should satisfy some
general constraints: rotational invariance, isospin invari-
ance, time-reversal invariance, and conservation of par-
ity. Isospin symmetry is broken by Coulomb interaction,
proton-neutron mass difference, and charge symmetry
breaking forces, the last two leading to rather small
effects [13,14]. In the case of Coulomb interaction,
mainly the direct term has to be accounted for, as the
exchange and correlation Coulomb energies seem to can-
cel each other to some extent, and their combined effect
together with the effect of charge symmetry breaking
forces is relatively small and responsible mainly for
such rather subtle effects as the Nolen-Schiffer anomaly
[13,14]. We shall not consider here the contributions due
to Coulomb exchange and charge symmetry breaking
energies [14]. Such a structure of the normal nuclear
EDF EN�r� would be complete in the absence of super-
fluidity. Since pairing correlations in nuclear systems
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structure:

ES�r� � g0�r�j
p�r� � 
n�r�j2 � g1�r�j
p�r� � 
n�r�j2;

where 
p;n�r� are the S � 0 proton/neutron anomalous
densities. There is no firm evidence of pairing in other
partial waves except the BCS-like s wave in either proton
or neutron channels, and the evidence for neutron-proton
pairing is inconclusive thus far. Notice that ES�r� is sym-
metric under the proton-neutron exchange. We assume
that the effective couplings g0;1�r� might depend on posi-
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tion through the normal densities and that this depen-
dence is consistent with expected symmetries. The den-
sity dependence of the effective couplings g0;1�r� arises
from two different sources. First, the bare coupling con-
stant in the pairing channel could in principle have some
intrinsic density dependence, and such dependence has
been considered by various authors during the years [2,6–
9,13]. Second, the renormalization of the pairing inter-
action, as described in our recent work [3–5], leads to
position dependence as well. The equations for the qua-
siparticle wave functions ui�r� and vi�r� and related
quantities are
Egs �
Z

d3r�EN�r� � ES�r�	; ES�r� :� ���r�
c�r� � geff�r�j
c�r�j2; �h�r� ��	ui�r� � ��r�vi�r� � Eiui�r�;

�
�r�ui�r� � �h�r� ��	vi�r� � Eivi�r�; h�r� � �r
�h2

2m�r�
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For the sake of simplicity, we do not display the spin and
isospin variables. kF�r� is the local Fermi momentum,
which could be either real or imaginary, while kc�r� is real
[3–5]. The role of the particle continuum [6,15] is taken
into account exactly using the technique described in
Ref. [16], the contour integration in the complex energy
plane of the Gorkov propagators for the Bogoliubov qua-
siparticles, in order to evaluate various densities. All
calculations have been performed in coordinate represen-
tation and all nuclei have been treated as spherical. For
reasons we discussed in detail in Refs. [3–5], the cutoff
energy should be chosen of the order Ec � O��F�. In
practice, we found that a value Ec � 70 MeV for SLy4
[17] and Ec � 55 MeV for FaNDF0 [13] is satisfactory,
and it ensures a convergence of the pairing field ��r� with
a relative error of � 10�5 for density independent bare
couplings. Note that the calculation of ��r� alone would
require a significantly smaller Ec of the order of 10–
15 MeV [4,5]. The optimal value for Ec varies, depending
on whether one uses an effective mass close to the bare
nucleon mass or a reduced one, as is typical with Skyrme
interactions. Even though this explicit cutoff energy Ec
appears in various places, indeed, no observable shows
any dependence on Ec, when its value it is chosen appro-
priately. Upon renormalization of the zero-range pairing
interaction, the emerging formalism is no more compli-
cated than a simple energy cutoff approach, with the only
major bonus, however, that there is no energy cutoff
dependence of the results. Since the kinetic energy of
the system is a diverging quantity of Ec and only the total
energy is a convergent quantity [3–5,18], it is very im-
portant that all densities (normal and anomalous) be
evaluated using the same energy cutoff Ec.
We shall treat even and odd numbers of particles within
the same framework and using the same EDF para-
metrization, unlike, e.g., Refs. [11.12]. The formalism
for evaluating the Gorkov propagators for odd systems
is described in great detail in Refs. [13,19]. For the
normal part of the EDF, we shall use either the Lyon
parametrization of the Skyrme interaction [17] or the
FaNDF0 suggested by Fayans [13]. Both EDFs reproduce
with high accuracy the infinite matter equations of state
of Refs. [20].

We shall present here results only for those nuclei for
which we can make comparison with available recom-
mended nuclear masses [21]. We consider at first the tin
(38 nuclei) and lead (34 nuclei) isotope chains. We per-
formed a number of calculations of these isotopes essen-
tially from the neutron to the proton drip lines (see Ref. [5]
for some preliminary results). For these nuclei, we can
test only the sum of the coupling constants, namely,
g�r� � g0�r� � g1�r�. We have considered a bare coupling
g�r� � const, which corresponds to volume pairing, and
also g�r� � V0�1� ��r�=�c	, with parameters chosen
to describe roughly one-half volume and one-half sur-
face pairing, as suggested, in particular, in Ref. [7].
One-neutron separation energies Sn and two-neutron
separation energies S2n for tin and lead isotopes were
computed for constant pairing g�r� � const, with mean
field computed with either SLy4 interaction [17] [g�r� �
�250 MeV fm3] or with Fayans normal nuclear EDF [13]
[g�r� � �200 MeV fm3]. For the case of SLy4 interac-
tion, we also show results obtained for the half-volume–
half-surface pairing model (V0 � �370 MeV fm3, �c �
0:32 fm�3). The search for the appropriate values for g�r�
222501-2



TABLE I. The rms of S2N and SN deviations, respectively,
from experiment [21] (in MeV’s) for several isotope and isotone
chains.

Z or N S2N=SN S2N=SN S2N
chain present Ref. [11] Ref. [23]

Z � 20 0:82=0:76 1:02=0:92 0.96
Z � 28 0:67=0:50 0:66=0:55 1.30
Z � 40 0:93=0:63 0:66=0:63 2.21
Z � 50 0:29=0:21 0:43=0:35 0.95
Z � 82 0:23=0:37 0:58=0:53 0.74
N � 50 0:37=0:26 0:41=0:23 NA
N � 82 0:43=0:31 0:50=0:56 NA
N � 126 0:42=0:23 0:88=0:52 NA
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FIG. 1. Sn for tin and lead isotopes computed using the SLy4
EDF (left) and Fayans’s FaNDF0 (right) with either volume or
half-volume–half-surface pairing.
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FIG. 2. The same as in Fig. 1 but S2n.
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was performed only among a finite set of values, e.g., in
the case of volume pairing we considered g � �200,
�225, �250, �275, and �300 MeV fm3 (see also
Ref. [5]).

The agreement between experiment and theory is par-
ticularly good for the case of FaNDF0. We relate this
result with the fact that the effective mass in FaNDF0 is
the bare nucleon mass, unlike the case of SLy4 EDF and
in agreement with the global mass fit of Refs. [11,12]. It is
notable that the agreement with experiment is equally
good for both tin and lead isotopes with the same value of
g, unlike Ref. [13]. Even though we used the same normal
nuclear EDF as in Ref. [13], our agreement with experi-
ment is notable superior (see Ref. [22]) even though we
parametrize the pairing interaction with one parameter
only vs up to five parameters used in these papers.

Since FaNDF0 in conjunction with the bare pairing
coupling constant g�r� � �200 MeV fm3 apparently pro-
vides the best description in the case of tin and lead
isotopes, further calculations were performed only with
this choice of parameters. In Fig. 3, we display the one-
proton separation energies Sp for three isotone chains (23
nuclei with N � 50, 25 nuclei with N � 82, and 14 nuclei
with N � 126) and Sn for calcium isotopes (24 nuclei),
and for nickel and zirconium isotopes see Ref. [22], 212
nuclei in total. Since the neutron numbers for these iso-
tone chains are also magic, again, we can test only the
same combination of coupling constants g�r� � g0�r� �
g1�r�. As we had conjectured at the beginning of this
study, one can indeed describe with a single value g
separately proton and neutron pairing correlations in
both even and odd systems, as opposed to the treatment
of Refs. [11,12], which slightly violates isospin invari-
ance. In essentially all cases in which we have been able to
perform a comparison between our results and those
available in literature, our results were either qualitatively
superior or, in a few separate cases, as good as any other
results. In Table I, we present rms deviation from experi-
mental (recommended) values [21] for the two and one
nucleon separation energies for several isotope and iso-
tone chains. The size of each set of nuclei in a chain was
222501-3
given by the number of nuclei in Ref. [11], for which there
are experimental values in the unpublished Audi and
Wapstra 2001 compilation.

There are a number of theoretical arguments, suggest-
ing that the pairing coupling should be density/position
dependent, due to the coupling to surface/particle-hole
modes, e.g., Ref. [24]. A similar line of reasoning was
presented in the case of dilute systems [25,26] and neu-
tron matter [27,28] for quite some time. Our results (see
Figs. 1 and 2) show that Sn and S2n for tin and lead
isotopes are not particularly sensitive to such effects. To
222501-3
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FIG. 3. Sp for isotone chains N � 50, 82, and 126 and Sn for
calcium isotopes. For S2p and S2n, see online report [22].
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some extent, this is not a surprise, since pairing correla-
tions are ’’built’’ at distances of the order of the coherence
length � / �h2kF=m� [29] (see Ref. [30] for a related
instructive example). This apparent low sensitivity of
SN and S2N to a possible density dependence of the pair-
ing couplings could in principle be profitably used to
describe other observables. From the results of Refs. [26],
one might infer that pairing coupling constants could
have a noticeable variation with the isospin composition
of a given system, since the magnitude of the induced
interactions changes dramatically as the number of fer-
mion species varies. Neither our results nor previous work
has necessitated the introduction of such a dependence,
however. In our phenomenological approach, based on
general symmetry arguments alone and the fact that the
pairing correlations are relatively weak in nuclear sys-
tems, we restricted the form of the EDF superfluid con-
tribution to the simplest one compatible with known
symmetries. We were able to infer that pairing properties
of either kind of nucleons can be accounted for with a
single constant g � g0 � g1. It remains to be seen
whether the other (nonperturbative) combination g0 �
g0 � g1 (never considered by other authors) could ever
become relevant.
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