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Structural Determinant of Protein Designability

Jeremy L. England and Eugene I. Shakhnovich*
Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138

(Received 23 August 2002; published 29 May 2003)
218101-1
Here we present an approximate analytical theory for the relationship between a protein structure’s
contact matrix and the shape of its energy spectrum in amino acid sequence space. We demonstrate a
dependence of the number of sequences of low energy in a structure on the eigenvalues of the structure’s
contact matrix, and then use a Monte Carlo simulation to test the applicability of this analytical result
to cubic lattice proteins. We find that the lattice structures with the most low-energy sequences are the
same as those predicted by the theory. We argue that, given sufficiently strict requirements for
foldability, these structures are the most designable, and we propose a simple means to test whether
the results in this paper hold true for real proteins.
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erty of a conformation, its contact trace, as a determinant
of the shape of the conformation’s sequence spectrum.We
then confirm the predicted usefulness of the contact trace

neighbors are considered to be in contact [13]. Next,
we represent the amino acid type of the ith monomer
in the chain as a 2M dimensional unit vector
Successful protein design relies in part on knowledge
of how a polypeptide chain’s native structure varies as a
function of its amino acid sequence. Yet even if this
‘‘protein folding problem’’ were solved in its entirety,
the would-be protein designer would still face the formi-
dable task of finding those sequences which folded to the
target structure he or she wished to engineer [1,2]. It is
therefore vital to know how many solutions to this search
of sequence space exist for a given target structure, i.e.,
how designable the target structure is [2–7]. The question
of what makes a particular protein structure more design-
able also bears fundamentally on our understanding of
how proteins first evolved.

Past studies of designability have been limited in large
part by their lack of generality. The previous contribu-
tions in [4,5], for example, rely heavily on their study of
two-letter monomer alphabets and Cartesian lattice poly-
mers, and can therefore offer no clear implications for the
20-letter, off-lattice world of real proteins [2]. In contrast,
studies such as that of Koehl and Levitt [7] come closest
to probing real protein designabilities, but have no theo-
retical foundations from which to extrapolate beyond
their numerical results. Finally, a number of investiga-
tions have assumed that the distribution of amino acid
sequence energies is either nearly [8] or totally [6] inde-
pendent of the structural topology of the target fold, a
premise which is flatly contradicted by the findings in [5].
The intention of this communication is therefore to iden-
tify a theoretically motivated, generally applicable quan-
titative measure of structural topology which we expect
to be a good predictor of designability.

In this Letter, we develop an approximate analytical
theory of the spectrum of possible monomer sequence
energies for a heteropolymer in any given conformation.
Our theory leads us to identify a novel topological prop-
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by running Monte Carlo simulations under conditions
which are more realistic than those for which the contact
trace was originally identified. Finally, we use the results
of these simulations to suggest a connection between the
contact trace and designability, and we propose a way to
test this hypothesis on real protein structures.

As a preliminary, we must draw a distinction between
what we term ‘‘strong designability’’ and ‘‘weak desig-
nability.’’ We define a structure’s ‘‘strong designability’’
in the same way that previous studies have defined its
‘‘designability’’: as the total number of amino acid se-
quences that fold to that structure. Theoretical arguments
based on the random energy model suggest that, in order
for a sequence to be foldable, its native state energy must
lie below a certain low-energy threshold Ec [5,9–12],
which represents the lowest-energy range accessible to
misfolded conformations. We therefore define a struc-
ture’s ‘‘weak designability’’ to be the fraction of its se-
quences which lie below a low-energy cutoff Ec. It is
important to note that, though the strong and weak ver-
sions of designability are set apart a priori, it is possible
that they will turn out to be the same thing in practice.
Indeed, we will argue later that, if natural thermody-
namic and kinetic requirements for folding are suffi-
ciently stringent, then a structure’s strong and weak
designability become essentially indistinguishable.

Our first aim is to determine whether contact topology
affects a structure’s distribution of possible sequence
energies, and to this end we derive a closed-form se-
quence partition function for a special class of amino
acid alphabets. We begin by considering a polymer of N
monomers, where each monomer can be one of 2M differ-
ent possible kinds. We may construct for any polymer
configuration an N � N traceless contact matrix C
whereby lattice nearest neighbors that are not sequence
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~ss�i� � �0; . . . ; 0; 1; 0; . . . ; 0�, where the nonzero vector ele-
ment is the kth element of the vector if the ith monomer is
of type k.

We define the Hamiltonian to be a standard nearest-
neighbor contact potential, i.e.,

H �
1

2

XN;N

i;j

Ci;j ~ss
�i� � �B~ss�j��; (1)

where B is the 2M� 2M matrix of interaction energies for
the different pairs of monomer types. A closed-form
expression for the partition function of this
Hamiltonian may be obtained if we let B take on the
special form

B �

2
664

V1;1 �V1;1 V1;2 �V1;2 . . .
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..

. ..
. ..

. ..
. ..

.

3
775: (2)

In other words, B is the direct product of a matrix V with
a ferromagnetic potential. Though we have now con-
strained the nature of our contact potential, we still retain
unlimited freedom to choose the types of interactions
represented in V.

Now let us define the M-vector ~�� through �k	1 �
s2k	1 � s2k	2. Our Hamiltonian becomes

H �
1

2

XN;N

i;j

Ci;j ~��
�i� � �V ~���j��; (3)

where ~���i� is a vector of unit length whose single nonzero
element may be either 1 or �1.

At this point, we define the MN �MN block matrix U
through UM�i�1�	k;M�j�1�	l � Ci;jVk;l. In other words, we
turn every element of C into an M�M block which
couples the vectors f ~���i�g through V wherever there is a
contact. Finally, if we write � � � ~���1�; . . . ; ~���N��, then the
Hamiltonian can be expressed as

H � 1
2� � �U��: (4)

This form of the Hamiltonian will allow us to calculate
the sequence space partition function, for any contact
map and any potential matrix V. To do so, we employ a
continuous-spin approximation, allowing each vector ~���i�

to swing anywhere on the M-dimensional unit sphere
instead of restricting it to one of the 2M available unit-
integer lattice points. This approximation not only smears
the discrete sequence spectrum into a continuous one, but
also distorts the spectral width by altering the relative
sizes of M and M� 1 letter sequence spaces, thereby
preventing the theory from making quantitatively accu-
rate predictions. Our assumption is that the model never-
theless retains important information about the effect that
variations in contact topology have on the shape of the
spectrum. The partition function now becomes
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Z��� �
Z

dMN�

 YN
i�1

��j ~���i�j � 1�

!
exp

�
�

�
2
� � �U��


:

(5)

Assuming hereafter that M � 1, we have

dM ~�� exp

�
�
�M� 1�

2
j ~��j2


’ dj ~��j��j ~��j � 1�: (6)

Defining M � �M� 1�I, where I is the MN �MN iden-
tity matrix, and u � M�1U, we may write

Z��� �
Z

dMN� exp

�
�

1

2
� � �M	 �U��


; (7)

and, since U is a real symmetric matrix, we finally obtain

Z���
Z�0�

� z��� �

��������������������������
det�M�

det�M��U�

s
�

1��������������������������
det�I	 �u�

p : (8)

If we use detA � expTr lnA to expand lnz to O��2� and
inverse-Laplace transform the resulting approximation of
the partition function to obtain a distribution of sequence
energies n�E�, we get

n�E� �
1

2�

Z
ei�Ez�i�� d�

’ exp

�
�

E2

Tru2


’ exp

�
�

E2

2NC�2
B


; (9)

where NC is the number of contacts and �2
B is the variance

of the interaction energies in B. A similar result was
obtained in [2] by a straightforward expansion of the
sequence partition function. Equation (9) says that the
Gaussian approximation of the density of states leads to a
naı̈ve sequence space random energy model (REM) for
n�E�. It is this REM picture, in which all structures with
the same number of contacts have identical sequence
spectra, which has been used implicitly in [6]. We dem-
onstrate below, however, that the consideration of higher
order terms in the expansion of lnz can have a profound
impact on how we understand designability.

Let us now consider the free energy F � � 1
� lnz of our

sequence space partition sum. Defining the matrix v �
1

M�1V and expanding about high ‘‘design temperature’’
(i.e., requiring that j��ij< 1, for all �i which are eigen-
values of u), we get

F � �
�
4
�Trv2��TrC2� 	

�2

6
�Trv3��TrC3�

�
�3

8
�Trv4��TrC4� 	O��4�: (10)

Those structures which minimize F will be the ones with
the greatest number of amino acid sequences that have
low energy when threaded onto that structure.
Minimization of F is therefore a means to maximize
weak designability, which we recall is determined by
the fraction of low-energy sequences in a structure’s
sequence spectrum. Thus, we now consider which choices
of the contact matrix C would serve to make the free
energy F as negative as possible. Because TrCn is equal to
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FIG. 1. The difference in sequence space entropy between an
energy near the peak of all structural sequence spectra (E �
�2) and one in the lower tail of all spectra (E � �8) as a
function of the contact trace, measured here by the largest
eigenvalue of the structure’s contact matrix (which follows
from TrCn �

P
�n
i ). Each point was generated from data

collected while slowly annealing a Monte Carlo sequence
design simulation from high temperature (T � 2) to low (T �
0:2), with 107 Monte Carlo steps taken at each temperature. The
boxed points correspond to structures which were chosen by
hand so as to ensure that the extrema of the range of possible
eigenvalues were represented. All other structures were chosen
randomly.
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FIG. 2. The change in sequence space entropy from energy
hEi�T � 1� � E to energy E for three structures with largest
contact matrix eigenvalues of 3.02 (high trace), 2.78 (inter-
mediate trace), and 2.60 (low trace).

P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2003VOLUME 90, NUMBER 21
the number of n-step paths along the contact map which
return to their starting place, we know that all such
contact traces must be positive. Thus, the exact behavior
of the series in (10) will hinge on whether the largest
eigenvalues of v are positive or negative.

For either type of potential matrix v, however, we
expect that there will be some positive correlation be-
tween the trace of an even power of a structure’s contact
matrix and the number of low-energy monomer sequen-
ces in that structure. Furthermore, the dependence of the
free energy expansion in (10) on such coarse quantities as
the traces of powers of v suggests that the impact of the
contact matrix on the spectrum of sequence energies
should be relatively insensitive to the detailed features
of the potential. We therefore determined to empirically
test whether the above results remained valid for a dis-
crete monomer alphabet which violated the special form
of the potential assumed in (2). We first calculated the
contact matrices for all 103 346 different compact con-
formations of 27-mers on a cubic lattice [13]. Next, we
calculated hEi vs T annealing curves for random starting
sequences on different structures for a standard Monte
Carlo search of sequence space with a move set contain-
ing composition-preserving two-monomer and three-
monomer permutations. The energy of each sequence
was determined using a potential set given by Table 6 of
[14]. This set of interactions, where average interactions
are subtracted out, is one of the most diverse potentials
possible for a 20-letter alphabet, and therefore provides
the most general empirical test of the predicted relation-
ship between sequence energies and contact topology.
From the annealing curves, we then calculated the en-
tropy in sequence space S�E� according to the prescription
given by Eq. (11) of [2].

Figure 1 plots the sequence space entropy difference
between low and near-modal energy versus the largest
eigenvalue of the structure’s contact matrix for 86 ran-
domly selected lattice structures. As predicted, the en-
tropy difference between the peak and the left tail
decreased as the largest contact matrix eigenvalue in-
creased (correlation � �0:92), indicating that more se-
quences have low energy in high trace structures. Figure 2
illustrates that the effect observed in Fig. 1 results from
global differences in the shapes of the sequence spectra of
high trace and low trace structures. The higher the contact
trace, the more gradually the number of sequences falls
off as energy decreases, and therefore the greater the
relative number of sequences of low energy. Clearly, the
contact trace of the target structure controls how low in
energy a Monte Carlo sequence optimization algorithm
running at fixed temperature Tdes will be able to search.
The greater the contact trace, the larger the S�E� at low
energies, i.e., the greater the weak designability.

Interestingly, the most designable 27-mer structures
identified using our maximum eigenvalue determinant
are similar to the one identified in [15] using random
sampling of sequences and a different, ’’solvationlike’’
218101-3
Miyazawa-Jernigan potential. This attests to the general-
ity of our proposed structural determinant of designabil-
ity with respect to potentials.

Structures of high contact trace are weakly designable,
but are they strongly designable? In order to address this
question, we examined the stability of sequences de-
signed on two structures of maximal and minimal contact
trace. For each target structure, we determined how many
of its designed sequences were ‘‘on target,’’ that is, had
the target structure as their unique energetic ground
state determined over all compact conformations, and
218101-3
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FIG. 3. We designed sequences on two different target struc-
tures in Monte Carlo annealing simulations of 5� 108 steps
sampled at every sequence in 104. Here, we plot the number of
sequences whose unique compact ground states were the struc-
ture on which they were designed, as a function of the differ-
ence in energy between the sequence’s ground state and the
lowest-lying excited state which shares fewer than 25% of its
contacts with the ground state.
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calculated the gap in energy between that of the ground
state and those of the lowest-energy structures with low
structural similarity to the ground state conformation.We
found that twice as many designed sequences were on
target for the high trace structure as for the low trace
structure. Furthermore, as Fig. 3 illustrates, the sequences
designed successfully on the high trace structure tended
on average to have larger energy gaps than their low trace
cousins, consistent with earlier observations that low-
energy in the native conformation also leads on average
to a larger gap and greater stability [16,17]

Figure 3 therefore gives us a means to unify strong and
weak designability. Past studies have suggested that, in
order for a protein sequence to fold rapidly to its native
state, it must have a larger-than-average energy gap
[12,18,19]. Figure 3 demonstrates that, if the conditions
for folding stably and quickly in nature demand suffi-
ciently high energy gaps, weak designability will be one
and the same with strong designability, since only by
having very low energy in its target structure will a
sequence have an appreciable chance of exhibiting the
gaps which are thermodynamically and kinetically re-
quired by the natural environment. We speculate that
protein evolution under such conditions would lead to
the emergence of natural protein folds with near-optimal
contact traces.

We have presented an analytical theory which identifies
the first instance of a generally applicable, well-defined,
numerical measure of a protein structure’s topology
which is expected to correlate with the structure’s desig-
218101-4
nability. Using a Monte Carlo search in the sequence
space of a lattice model with 20-letter energetics, we
have shown that the implications of the theory extend
beyond the special assumptions under which they were
first developed. The finding that higher contact trace may
lead to greater potential for thermal stability leads us to
hypothesize that thermophilic organisms, whose natural
environment makes uncommonly strict demands for pro-
tein stability, exhibit a genomic bias towards folds of
higher contact trace. We have recently found that this
bias exists (unpublished results), providing further en-
couragement that the contact trace may yet offer new
insight into the laws governing structural diversity in
natural proteins.
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