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Lorenz Number in High Tc Superconductors: Evidence for Bipolarons
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The strong electron-phonon interaction in cuprates has gathered support over the last decade in a
number of experiments. While phonons remain almost unrenormalized, electrons are transformed into
itinerant bipolarons and thermally excited polarons when the electron-phonon interaction is strong. We
calculate the Lorenz number of the system to show that theWiedemann-Franz law breaks down because
of the interference of polaron and bipolaron contributions in the heat flow. The model fits numerically
the experimental Hall Lorenz number, which provides direct evidence for bipolarons in the cuprates.
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preformed bipolarons, respectively, [18]. Many other ex-
perimental observations were explained using the bipo-

the electrical conductivity, and the elementary charge,
respectively. Reference [23] predicted a very low Lorenz
The discovery of high-temperature superconductors
[1,2] has broken constraints on the maximum Tc pre-
dicted by the conventional theory of low-temperature
superconducting metals and alloys. Understanding the
pairing mechanism of carriers and the nature of the
normal state in cuprates and other novel superconductors
has been a challenging problem of condensed matter
physics. A number of theoretical models have been pro-
posed, which rely on different nonphononic mechanisms
of pairing (see, for example, [3,4]). On the other hand,
over the last decade, increasing evidence for the electron-
phonon interaction has been provided by isotope effect
measurements [5], infrared [6–8] and thermal conductiv-
ity [9], neutron scattering [10], and more recently by
angle-resolved photoemission spectroscopy [11,12].

To account for the high values of Tc in the cuprates, one
has to consider electron-phonon (e-ph) interactions,
which are larger than those used in the intermediate
coupling theory of superconductivity [13]. Regardless of
the adiabatic ratio, the Migdal-Eliashberg theory of
superconductivity and the Fermi liquid have been shown
to break down at the e-ph coupling constant � � 1 [14].
The many-electron system collapses into the small (bi)-
polaron regime at � * 1 with well-separated vibration
and charge-carrier degrees of freedom. Although it might
have been thought that these carriers would have a mass
too large to be mobile, the inclusion of the on-site
Coulomb repulsion and the poor screening of the long-
range e-ph interaction do lead to mobile intersite bipolar-
ons [15,16]. Above Tc the Bose gas of these bipolarons is
nondegenerate and below Tc their phase coherence sets in
and superfluidity of the doubly charged 2e bosons can
occur. In this picture, the thermally excited single polar-
ons coexist with the Bose gas.

There is much evidence for the crossover regime at T�

and normal-state charge and spin gaps in the cuprates
[17]. These energy gaps could be understood as being half
of the binding energy � and the singlet-triplet gap of
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laron model [19]. These include the Hall ratio, the Hall
angle, ab and c-axis resistivities, magnetic susceptibility,
and angle-resolved photoemission. The bipolaron model
provides parameter-free fits of critical temperatures,
upper critical fields, explains a remarkable increase of
the quasiparticle lifetime below Tc[20], and the symme-
try of the order parameter [21] in many cuprates. Further
evidence for bipolarons comes from a parameter-free
estimate of the renormalized Fermi energy �F[22], which
yields a value well below 100 meV. It is so small that
pairing is certainly individual in most cuprates; i.e., the
bipolaron size is smaller than the intercarrier distance.
This is the case in a (quasi)two-dimensional system, if

�F & 	�: (1)

The normal-state pseudogap, experimentally measured in
many cuprates, was found as large as �=2 * 50 meV [17],
so that Eq. (1) is well satisfied in underdoped and probably
also in optimally doped cuprates. One should notice that a
coherence length in the charged Bose gas is not the size of
a boson. It depends on the interparticle distance and the
mean-free path, [18], and might be as large as in the BCS
superconductors. Hence, it is incorrect to apply the ratio
of the coherence length to the intercarrier distance as a
criterion of the BCS-Bose liquid crossover. The criterion
of real-space pairing is given by Eq. (1).

Direct evidence for the existence of charged 2e Bose
liquid in the normal-state cuprate materials is highly
desirable. In 1993 Alexandrov and Mott [23] discussed
the thermal conductivity �; the contribution from the
carriers given by the Wiedemann-Franz ratio depends
strongly on the elementary charge as ��e���2 and should
be significantly suppressed in the case of e� � 2e com-
pared with the Fermi-liquid contribution. As a result, the
Lorenz number, L � �e=kB�

2�e=�T��, differs signifi-
cantly from the Sommerfeld value Le � 	2=3 of the
standard Fermi-liquid theory, if carriers are bipolarons.
Here �e, �, and e are the electronic thermal conductivity,
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number Lb for bipolarons, Lb � 6Le=�4	
2� � 0:15Le,

due to the double charge of carriers, and also due to their
nearly classical distribution function above Tc.

Unfortunately, the extraction of the electron thermal
conductivity has proven difficult since both the electron
term �e and the phonon term �ph are comparable to each
other in the cuprates. Some experiments have attempted
to get around this problem in a variety of methods
[24–26]. In particular, Takenaka et al. [24] found that
�e is constant or weakly T dependent in the normal state
of YBa2Cu3O6�x. This approximately T-independent �e
therefore implies the violation of the Wiedemann-Franz
law (since the resistivity is found to be a nonlinear func-
tion of temperature) in the underdoped region. The break-
down of the Wiedemann-Franz law has been seen also in
other cuprates [27,28].

More recently a new way to determine the Lorenz
number has been realized by Zhang et al. [29], based on
the thermal Hall conductivity. The thermal Hall effect
allowed for an efficient way to separate the phonon heat
current even when it is dominant. As a result, the ‘‘Hall’’
Lorenz number, LH � Lxy � �e=kB�2�xy=�T�xy�, has
been directly measured in YBa2Cu3O6:95 because trans-
verse thermal �xy and electrical �xy conductivities in-
volve only the electrons. Remarkably, the measured
value of Lxy just above Tc is about the same as predicted
by the bipolaron model, Lxy � 0:15Le. However, the
experimental Lxy showed a strong temperature depen-
dence, which violates the Wiedemann-Franz law. This
experimental observation is hard to explain in the frame-
work of any Fermi-liquid model.

In this Letter we propose a theory of the Lorenz
number in the cuprates explaining the experimental re-
sults by Zhang et al. [29]. Our particular interest lies in
the conclusions that theWiedemann-Franz law is violated
in the cuprates in the temperature range below the cross-
over temperature T�. Here we demonstrate that the
Wiedemann-Franz law breaks down because of the inter-
ference of polaron and bipolaron contributions to the
heat transport. When thermally excited polarons are in-
cluded, the bipolaron model explains the violation of the
Wiedemann-Franz law in the cuprates and the Hall
Lorenz number as seen in the experiment.
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Thermally excited phonons and (bi)polarons are well
decoupled in the strong-coupling regime of the electron-
phonon interaction [18], so that the conventional
Boltzmann equation for renormalized carries can be
applied. We make use of the � approximation [30] in an
electric field E � r�, a temperature gradient rT, and in
a weak magnetic field B ? E, rT. The bipolaron and
single-polaron nonequilibrium distributions are found as

f�k� � f0�E� � �
@f0
@E

v � fF��n Fg; (2)

where v � @E=@k, F � �E���rT=T � r��� 2e��
and f0�E� � �y�1 exp�E=T� � 1��1 for bipolarons with
the energy E � k2=�2mb�, and the Hall angle � �
�b � 2eB�b=mb, and F � �E� �=2��=2�rT=T �
r��=2� e�� and f0�E� � fy�1=2 exp��E��=2�=T� �
1g�1, E � k2=�2mp� and � � �p � eB�p=mp for ther-
mally excited polarons. Here mb;p are the bipolaron and
polaron masses of two-dimensional carriers, y �
exp��=T�, � is the chemical potential, �h � c � kB � 1,
and n � B=B is a unit vector in the direction of the
magnetic field. Equation (2) is used to calculate the elec-
trical and thermal currents induced by the applied ther-
mal and potential gradients as

j� � a� r ��� 2e�� � b� r T; (3)

w� � c� r ��� 2e�� � d� r T: (4)

Equation (3) defines the current with the polaronic con-
ductivity�p � e2�pnp=mp, where the kinetic coefficients
are given by

axx � ayy �
1

2e
�p�1� 4A�;

ayx � �axy �
1

2e
�p��p � 4A�b�;

bxx � byy �
�p
e

�
�p �

���
2T

� 2A��b ��=T�
�
;

byx � �bxy

�
�p
e

�
�p

�
�p �

���
2T

�
�2A�b��b ��=T�

�
:

(5)

Equation (4) defines the heat flow with the coefficients
given by
cxx � cyy �
�p
2e2

�T�p � �=2� e�� 2A�T�b � 2e���;

cyx � �cxy �
�p
2e2

��p�T�p � �=2� e�� � 2A�b�T�b � 2e���;

dxx � dyy �
�p
e2

�
T%p � �p����=2� e�� � ��=2� e��

���
2T

� A�T%b � �b�2e���� � 2e��=T�
�
;

dyx � �dxy �
�p
e2

�
�p

�
T%p � �p����=2� e�� � ��=2� e��

���
2T

�
�A�b�T%b��b�2e���� � 2e��=T��

�
:

(6)
Here

� �

R
1
0 dEE

2@f0=@E
T
R
1
0 dEE@f0=@E

�
2��z; 2; 1�
��z; 1; 1�
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FIG. 1. The experimental Hall Lorenz number [29] in
YBa2Cu3O6:95 fitted by the bipolaron theory, Eqs. (11) and
(12), with �b=�p � 0:44. The upper inset shows the linear
in-plane resistivity and the Hall ratio. The lower inset shows the
ratio of the Hall Lorenz number to the Lorenz number as a
function of temperature.
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and

% �

R
1
0 dEE

3@f0=@E

T2
R
1
0 dEE@f0=@E

�
6��z; 3; 1�
��z; 1; 1�

are numerical coefficients, expressed in terms of the
Lerch transcendent ��z; s; a� �

P
1
k�0 z

k=�a� k�s with
z � y in �b, %b, and z � �y1=2 exp���=�2T�� in �p,
%p, and A � mp�bnb=�mb�pnp� is the ratio of the bipo-
laron and polaron contributions to the transport, which
strongly depends on the temperature. For simplicity we
neglect the spin gap, which is small in the optimally
doped cuprates [17]. Then the bipolaron singlet and triplet
states are nearly degenerate, so that the bipolaron and
polaron densities are expressed as

nb �
2mbT
	

j ln�1� y�j; (7)

np �
mpT

	
ln

�
1� y1=2 exp

�
�

�

2T

��
: (8)

Using the kinetic coefficients Eqs. (5) and (6) we obtain

( �
1

�p�1� 4A�
; (9)

RH �
1� 4A�b=�p

enp�1� 4A�2
; (10)

L �
Lp � 4ALb
1� 4A

�
A�2�p � �b ��=T�2

�1� 4A�2
; (11)

LH �
Lp � 4ALb�b=�p

1� 4A�b=�p

�
A�4A��b=�p��2�p � �b ��=T�2

�1� 4A�2�1� 4A�b=�p�
(12)

for the in-plane resistivity, the Hall ratio, the Lorenz
number, and the Hall Lorenz number, respectively, where
Lp � �%p � �2

p� and Lb � �%b � �2
b�=4 are the polaron

and bipolaron Lorenz numbers. In the limit of a pure
polaronic system (i.e., A � 0) the Lorenz numbers,
Eqs. (11) and (12) are L � LH � Lp. In the opposite limit
of a pure bipolaronic system (i.e., A � 1) we obtain a
reduced Lorenz number [23] L � LH � Lb. However, in
general our Eqs. (11) and (12) yield the temperature
dependent Lorenz numbers that differ significantly from
both limits. The main difference originates in the second
terms on the right-hand side of Eqs. (11) and (12), which
describe an interference of polaron and bipolaron contri-
butions in the heat flow. In the low-temperature regime,
T � �, this contribution is exponentially small because
the number of unpaired polarons is small. However, it is
enhanced by the factor ��=T�2 and becomes important in
the intermediate temperature range Tc < T < T�. The
contribution appears as a result of the recombination of
217001-3
a pair of polarons into the bipolaronic bound state at the
cold end of the sample, which is reminiscent to the
contribution of the electron-hole pairs to the heat flow
in semiconductors [30]. These terms are mainly respon-
sible for the breakdown of the Wiedemann-Franz law in
the bipolaronic system.

It has been shown that the bipolaron model nicely fits
the temperature dependencies of the in-plane [31] and
out-of-plane [32] resistivities and the Hall ratio in the
cuprates. Here we show that it also fits the Hall Lorenz
number measured by Zhang et al. [29]. To reduce the
number of fitting parameters we take the charge pseudo-
gap �=2 � 600 K, as found by Mihailovic et al. [17] for
nearly optimally doped YBa2Cu3O6�x in their systematic
analysis of charge and spin spectroscopies. According to
Ref. [33] the main scattering channel above Tc is due to
the particle-particle collisions with the relaxation time
�b;p / 1=T2. The chemical potential is pinned near the
mobility edge, so that y � 0:6 in a wide temperature
range, if the number of localized states in the random
potential is about the same as the number of bipolarons
[33]. This is the case in YBa2Cu3O6�x, where every excess
oxygen ion x can localize the bipolaron. As a result, there
is only one fitting parameter in LH, Eq. (12), which is the
ratio of the bipolaron and polaron Hall angles �b=�p.
The model well fits the experiment, Fig. 1, with a rea-
sonable value of �b=�p � 0:44. It also quantitatively
reproduces the (quasi)linear in-plane resistivity and the
inverse Hall ratio, as observed in the cuprates (upper inset
of Fig. 1 and Refs. [31,33]).
217001-3



P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2003VOLUME 90, NUMBER 21
The lower inset of Fig. 1 shows a slightly lower Lorenz
number compared to the Hall Lorenz number produced
by our calculations. Because the thermal Hall conductiv-
ity directly measures the Lorenz number in the frame-
work of our model, it can be used to measure the lattice
contribution to the heat flow as well.When we subtract the
electronic contribution determined by using the Lorenz
number, the lattice contribution to the diagonal heat flow
appears to be much higher than is anticipated in the
framework of any Fermi-liquid model.

We notice that some recent measurements [34] on
Tl2Ba2CuO6�+ suggest that the Wiedemann-Franz law
holds perfectly well in the overdoped region and therefore
conclude that the Fermi liquid prevails at this doping
range. Alexandrov and Mott [18] suggested that there
might be a crossover from the Bose-Einstein condensa-
tion to a BCS-like polaronic superconductivity across the
phase diagram. Thus Proust et al. ’s results [34] are still
compatible with the (bi)polaron picture. If the Fermi
liquid does exist at overdoping then it is likely that the
heavy doping causes an ’’overcrowding effect’’ where
the polarons find it difficult to form bipolarons due to
the larger number of competing holes [18].

We conclude that by the necessary inclusion of ther-
mally excited polarons as the temperature rises, the bi-
polaron model predicts the Lorenz number very close to
experiment in underdoped and optimally doped cuprates.
Our consideration leads to good fits for the experimental
Hall Lorenz number, Hall ratio, and the in-plane
resistivity. The interference of the polaron and bipolaron
contributions to the energy flow breaks down the
Wiedemann-Franz law and results in the unusual tem-
perature dependence of the Lorenz number.

This work was supported by the Leverhulme Trust
(Grant No. F/00261/H) and by the EPSRC UK (Grant
No. R46977). We greatly acknowledge P.W. Anderson and
Y. Zhang for helpful discussions of some theoretical and
experimental aspects.
21700
[1] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
[2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L.

Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C.W. Chu,
Phys. Rev. Lett. 58, 908 (1987).

[3] P.W. Anderson, The Theory of Superconductivity in
the High Tc Cuprates (Princeton University Press,
Princeton, 1997).

[4] E.W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad,
cond-mat/0206217, and references therein.

[5] G. Zhao, M. B. Hunt, H. Keller, and K. A. Muller, Nature
(London) 385, 236 (1997).

[6] D. Mihailovic, C. M. Foster, K. Voss, and A. J. Heeger,
Phys. Rev. B 42, 7989 (1990).

[7] P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone,
P. Roy, S-W Cheong, W. Sadowski, and E. Walker, Solid
State Commun. 91, 113 (1994).
1-4
[8] T. Timusk, C. C. Homes, and W. Reichardt, Anharmonic
Properties of High Tc Cuprates, edited by D. Mihailovic,
G. Ruani, E. Kaldis, and K. A. Muller (World Scientific,
Singapore, 1995), p. 171.

[9] J. L. Cohn, S. A. Wolf, and T. A. Vanderah, Phys. Rev. B
45, 511 (1992).

[10] T. Egami, J. Low Temp. Phys. 105, 791 (1996).
[11] A. Lanzara, P.V. Bogdanov, X. J. Zhou, S. A. Kellar,

D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori,
K. Kishio, J. I. Shimoyana, T. Noda, S. Uchida,
Z. Hussain, and Z. X. Shen, Nature (London) 412, 510
(2001).

[12] A. Chainani, T. Yokoya, T. Kiss, S. Shin, T. Nishio, and
H. Uwe, Phys. Rev. B 64, 180509 (2001).

[13] G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).
[14] A. S. Alexandrov, Phys. Rev. B 46, 2838 (1992).
[15] A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett.

82, 807 (1999); J. Phys. Condens. Matter 14, 5337 (2002).
[16] J. Bonca and S. A. Trugman, Phys. Rev. B 64, 094507

(2001).
[17] D. Mihailovic, V.V. Kabanov, K. Zagar, and J. Demsar,

Phys. Rev. B 60, R6995 (1999), and references therein.
[18] A. S. Alexandrov and N. F. Mott, High Temperature

Superconductors and Other Superfluids (Taylor and
Francis, London, 1994).

[19] For a recent review, see A. S. Alexandrov and P. P.
Edwards, Physica (Amsterdam) 331C, 97 (2000), and
references therein.

[20] A. S. Alexandrov and C. J. Dent, J. Phys. Condens. Matter
13, L417 (2001).

[21] A. S. Alexandrov, Philos. Mag. B 81, 1397 (2001).
[22] A. S. Alexandrov, Physica (Amsterdam) 363C, 231

(2001).
[23] A. S. Alexandrov and N. F. Mott, Phys. Rev. Lett. 71, 1075

(1993).
[24] K. Takenaka, Y. Fukuzumi, K. Mizuhashi, S. Uchida,

H. Asaoka, and H. Takei, Phys. Rev. B 56, 5654 (1997).
[25] R. C. Yu, M. B. Salamon, J. P. Lu, and W. C. Lee, Phys.

Rev. Lett. 69, 1431 (1992).
[26] Y. Zhang, N. P. Ong, Z. A. Zhang, R. Gagnon, and

L. Taillefer, cond-mat/0001037.
[27] R.W. Hill, C. Proust, L. Taillefer, P. Fournier, and R. L.

Greene, Nature (London) 414, 711 (2001).
[28] J. Takeya, Y. Ando, S. Komiya, and X. F. Sun, Phys. Rev.

Lett. 88, 077001 (2002).
[29] Y. Zhang, N. P. Ong, Z. A. Xu, K. Krishana, R. Gagnon,

and L. Taillefer, Phys. Rev. Lett. 84, 2219 (2000).
[30] A. Anselm, Introduction of Semiconductor Theory

(Prentice and Hall, New Jersey, 1981).
[31] X. H. Chen, M. Yu, K. Q. Ruan, S.Y. Li, Z. Gui, G. C.

Zhang, and L. Z. Cao, Phys. Rev. B 58, 14 219 (1998);
W. M. Chen, J. P. Franck, and J. Jung, Physica
(Amsterdam) 341C, 1875 (2000).

[32] J. Hofer, J. Karpinski, M. Willemin, G. I. Meijer, E. M.
Kopnin, R. Molinski, H. Schwer, C. Rossel, and
H. Keller, Physica (Amsterdam) 297C, 103 (1998); V. N.
Zverev and D.V. Shovkun, JETP Lett. 72, 73 (2000).

[33] A. S. Alexandrov, A. M. Bratkovsky, and N. F. Mott,
Phys. Rev. Lett. 72, 1734 (1994).

[34] C. Proust, E. Boakin, R.W. Hill, L. Taillefer, and A. P.
Mackenzie, Phys. Rev. Lett. 89, 147003 (2002).
217001-4


