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Transport through Quantum Dots in Mesoscopic Circuits
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We study the transport through a quantum dot, in the Kondo Coulomb blockade valley, embedded
in a mesoscopic device with finite wires. The quantization of states in the circuit that hosts the quantum
dot gives rise to finite size effects. These effects make the conductance sensitive to the ratio of the
Kondo screening length to the wires length and provide a way of measuring the Kondo cloud. We present
results obtained with the numerical renormalization group for a wide range of physically accessible
parameters.
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FIG. 1. (a) Mesoscopic circuit with an embedded quantum
dot. (b) Conductance as a function of the QD level position for a
system with infinite wires (tDW � 0:14 t0) and U � t0. T � 0
(open diamonds) T ’ 10T0

K (filled diamonds). (c) Zero tem-
perature conductance as a function of the QD level position for
a system with finite wires (� ’ 10T0

K and tCW � 0:6 t0) and

effects become important [5–9]. Then, in any nanoscopic
system with a QD coupled to one dimensional leads or

different values of �W : at-resonance (squares), off-resonance
(triangles), and intermediate case �W � 0:4� (circles).
Since the pioneer work of Goldhaber-Gordon and co-
workers reporting the observation of Kondo effect in a
single quantum dot (QD) [1], many different circuit and
dot configurations have been designed and studied [2]. In
a single electron transistor or QD built on a semiconduc-
tor heterolayer, the most relevant parameters can be con-
trolled by applying voltages. The possibility of their
continuous variation allows one to investigate different
regimes with different numbers of electrons localized in
the dot [3]. States with a well-defined number of electrons
tend to be stabilized by the Coulomb interaction, a phe-
nomenon known as Coulomb blockade. When an odd
number of electrons is stable in the dot and the total
spin is S � 1=2, the coupling with the leads gives rise
to the usual Kondo effect. The Kondo effect is the mag-
netic screening of the dot spin by the electrons of the host
[4]. The screening occurs by the formation of a spin
singlet involving the dot spin and the host electron’s spins.
This screening is nearly fully developed below a charac-
teristic temperature TK known as the Kondo temperature.
The size of the screening cloud, the spatial extension of
the singlet wave function, is the Kondo screening length
�K � �hvF=TK where vF is the Fermi velocity. For a
typical QD the Kondo temperature TK is of the order of
magnitude of 1� and the Kondo screening length can be
up to 1 	m. A logical step in the development of molecu-
lar electronics is the connection of quantum wires to
single electron transistors to be used as building blocks.
The reduction of the quantum wires dimensions down to
the micron length scale may change the system proper-
ties. For such devices to be useful, a detailed knowledge
of the behavior of the transmission phase shift and the
conductance through this system is needed.

In GaAs circuits with a QD, the smallness of TK makes
it possible to alter the Kondo ground state by finite size
effects. It was shown that whenever the characteristic size
of the system is reduced and the mean level spacing �
becomes of the order of or larger than TK, finite size
0031-9007=03=90(21)=216801(4)$20.00 
wires of the order of 1 	m of length, the Kondo effect
may be subject to size effects. Based precisely on these
effects, Simon and Affleck made two proposals to mea-
sure the Kondo screening length [8,9]. The first one con-
cerns a closed loop with a QD. The persistent current
induced by a magnetic flux threading the ring is sensitive
to the screening length and is reduced when the circum-
ference of the ring is smaller than �K. The second pro-
posal, which is also the subject of the present work,
considers a QD coupled to mesoscopic leads.

In what follows we study a QD attached to quantum
wires as schematically shown in Fig. 1(a). By a quantum
wire we mean a narrow wire with a small number of
channels participating in the conductance. The wires are
weakly coupled at one end to the QD and at the other to
three dimensional macroscopic contacts that act as a
reservoir. The Hamiltonian of the system is then given by
2003 The American Physical Society 216801-1
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H � HD �HW �HC �HDW �HCW; (1)

where the first two terms corresponding to the dot and
wire Hamiltonians are

HD �
X
�

Edd
y
�d� �Udy" d"d

y
# d#; (2)

where dy� creates an electron with spin � and energy Ed
in the quantized state of the QD and U is the Coulomb
repulsion for electrons in this state,

HW �
XN

�;�;n�1

"Wc
y
�n�c�n�

	 t0
XN	1

�;�;n�1


cy�n�c��n�1�� � H:c:
; (3)

with � � R;L denoting the right and left wires de-
scribed by the conventional one dimensional tight bind-
ing model. For simplicity, as in Ref. [9], the contact
Hamiltonian HC describes two linear chains with a hop-
ping matrix element t0. The last two terms of the
Hamiltonian describe the coupling of these three compo-
nents: HDW � 	tDW

P
�;��d

y
�c�1� � H:c:� and HCW �

	tCW
P
�;��c

y
�N�a�1� � H:c:�, where ay�1� creates an

electron in the first site of the contact �. The parame-
ters Ed and U can be estimated and related to a gate
voltage using a capacitance model for the QD [10].

If tDW � tCW � 0 the wires are isolated and each en-
ergy spectrum corresponds to a set of N states. Around
the Fermi energy these states are separated by a charac-
teristic energy � ’ �hvF�=L ’ 4t0=N where L �
a�N 	 1� is the wire length and a the lattice constant.
When the wires are connected to the contacts with a
nonzero tCW , the wire states become resonances of
width �. The local density of states at the wire end
 W�!�, consists of a collection of resonant states charac-
terized by the two energy scales � and � [7]. This
structure of the system that hosts the QD may drastically
change the Kondo screening and consequently the linear
conductance of the circuit. Using the Keldysh formalism
[11] the conductance can be put as follows:

G�T� �
2e2

h
2�

Z
d!

�
	
@f�!�
@!

�

�!� D�!�; (4)

where f�!� is the Fermi function, 
�!� �
��tDW�2 W�!�, and  D�!� is the QD spectral density
[4]. This simple formula gives the conductance of the
central part of the circuit: QD plus wires. It can be
obtained calculating the current through the CW links
[11] and expressing it in terms of the QD spectral density.
The spectral densities are calculated using the numerical
renormalization group (NRG) technique [12–14]. The
linear conductance as function of Ed is shown in
Fig. 1(b) for tCW � t0 corresponding to infinite wires
(L! 1) without constrictions. At high temperatures
216801-2
two Coulomb peaks and the central Coulomb block-
ade valley are clearly observed. The Coulomb peaks are
due to Ed or Ed �U being aligned with the Fermi energy.
The central valley, away from the Coulomb blockade
peaks, has one electron localized at the dot and corre-
sponds to the Kondo regime. As the temperature is low-
ered, the conductance at the central Kondo valley
increases indicating the occurrence of the Kondo screen-
ing. In this case  W�!� is constant around the Fermi level
and  D�!� develops a narrow Kondo resonance at the
Fermi level. At zero temperature, at the center of the
Kondo valley 2�
�EF� D�EF� � 1, a situation known
as the unitary limit, and the conductance is simply
2e2=h. For finite wires with a constriction (tCW < t0),
the low temperature conductance shows finite size effects
in the whole range of Ed as shown in Fig. 1(c). At these
low temperatures, the conductance becomes sensitive to
the relative position of the Fermi energy EF and the
structure of  W�!�. We distinguish three cases: (i) the
Fermi level lying at a wire resonant state, a maximum in
 W�!� (the at-resonance case), (ii) exactly between two
resonances, a minimum in  W�!� (the off-resonance
case), and (iii) intermediate situations. As shown in 1(c)
for the at-resonance and off-resonance cases, a conduc-
tance of 2e2=h is obtained at the Coulomb blockade
valley, while for intermediate situations strong anomalies
are obtained. These results correspond to the low tem-
perature limit, for T > � the structure of  W�!� be-
comes unimportant and all three curves of Fig. 1(c)
collapse into a single one that reproduces the high tem-
perature behavior of Fig. 1(b).

The behavior of the transmission close to the Coulomb
peaks can be understood in terms of a simple single
particle resonant state lying above (for Ed * 0) or below
(for Ed & 	U) the Fermi energy. If Ed ’ 	U=2, the
center of the Coulomb blockade valley, the behavior is
dominated by the Kondo physics. Let us now concentrate
on the Kondo regime (Ed < 0 and Ed �U > 0) and define
a reference Kondo temperature T0

K [12] at the center of the
valley (Ed � 	U=2) of the system with infinitely long
quantum wires (L! 1). If a system with finite wires is
such that T0

K � �, on the scale of the characteristic
Kondo energy the host local density of states can be
averaged to its mean value and the finite size effects are
washed out for any temperatures T * T0

K. This means that
as the temperature is lowered and the Kondo screening
starts to develop, the finite size effects are unimportant.
The Kondo peak in  D�!� keeps its width (� T0

K) un-
changed but it is modulated in the scale of � [7].
Conversely, if the system were such that T0

K � �, we
expect strong finite size effects both in the spectral prop-
erties and in the conductance at any temperature T & �,
i.e., even before the Kondo effect of the reference system
starts to develop. For high temperatures T > �, the finite
size effects are washed out and the behavior of the system
is independent of �.
216801-2
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In a circuit built on a semiconductor heterolayer, the
position of EF relative to the wire structure as well as the
coupling to the reservoirs (tCW) can be varied applying
gate voltages [2]. In Fig. 2 the conductance as a function
of temperature for different values of the parameters is
shown. For an ideal coupling (tCW � t0) the conductance
presents a universal behavior [solid line in Figs. 2(a) and
2(b)] and reaches the value 2e2=h. In what follows we
analyze these results according to the position of the
Fermi level relative to the structure of the wire density
of states  W�!�.

(i) At-resonance case.—The conductance obtained
from Eq. (4) for a relatively long quantum wire with T0

K ’
3� is shown in Fig. 2(a) for different values of the wire-
contact coupling strength tCW=t0. For tCW < t0, as T is
lowered and approaches the energy scale �, the structure
in  D�!� becomes relevant and the conductance departs
from the tCW � t0 case. As T ! 0, the ideal value is
recovered generating a minimum in the conductance. In
the low temperature regime, the QD acts as a perfect link
between the right and left wires creating a single wire of
length 2L. The at-resonance condition implies that the
Fermi level is aligned with a wire state giving an ideal
conductance. For short wires with T0

K <�, the screening
develops for temperatures T �� [6] and, for the parame-
ters studied (� & �), the conductance is not very sensi-
tive to the confinement effects [Fig. 2(b)]. In the regime
� � ( confinement effects are expected to be much
stronger as shown in Ref. [9].

(ii) Off-resonance case.—For T0
K > � and low tem-

peratures, the QD acts again as a perfect link, the result-
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FIG. 2. Conductance as a function of temperature for a � ’
T0
K=3 system (a) and (c), and a � ’ 10T0

K system (b) and (d).
(a) and (b) At-resonance (circles) and off-resonance (squares)
situations with tCW � 0:5 t0 (filled symbols), and tCW � 0:6 t0
(open symbols). (c) and (d) Conductance for different values of
�W=� and tCW � 0:5 t0. The other parameters are Ed �
	0:5U, U � t0, T0

K ’ 5� 10	5t0, and tDW � 0:14 t0 [�� T0
K

for (b) and (d)]. The solid line in (a) and (b) is the conductance
for an infinite wire.
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ing effective wire of length 2L has resonant states
separated by �=2, rather than by �, and one of them is
aligned with EF. Although the at-resonance and off-
resonance spectral densities are different [7] the tempera-
ture dependence of the conductance is similar [Fig. 2(a)],
in fact the product 
�!� D�!� has qualitatively the same
structure in both cases giving a conductance that does not
clearly distinguish the two situations. For T0

K � �, as the
temperature increases, the conductance departs from its
low temperature value G� 2e2=h [Fig. 2(b)] at a very
small temperature ( � T0

K) which can be identified as the
off-resonance Kondo temperature of the system.

(iii) Intermediate case.—This situation where the
Fermi level lies at an arbitrary position with respect to
wire states generates a quite different behavior at low
temperatures. The conductance never reaches the value
2e2=h even for T ! 0 [see full symbols in Figs. 2(c) and
2(d)] essentially for reasons not involving interactions.
Even with the QD behaving as a perfect link, the resulting
wire states would not be aligned with EF. For very long
wires the conductance will be close to 2e2=h in the
temperature range 
�; T0

K
.
The conductance as a function of "W for short

(T0
K < �) wires is shown in Fig. 3 for different tempera-

tures. As discussed above, for low temperatures both the
at-resonance and off-resonance cases give a conductance
close to its ideal value 2e2=h, as shown in Fig. 3(a). In
agreement with the results of Ref. [9], for intermediate
temperatures (T � T0

K), the off-resonance case gives a
small conductance [see Fig. 3(b)]. This change of behavior
looks like a change in the periodicity of G vs "W . Finally
at high enough temperatures the amplitude of the oscil-
lations goes to zero [see Fig. 3(c)]. For long wires, as can
be deduced from Fig. 2(c), the intermediate regime is
never observed, i.e., the system does not show a doubling
of periodicity in G vs "W . In quantum wires with one
channel, the condition T0

K _ � is equivalent to L _ �0K
and these results of G�T� vs "W could be used to measure
the Kondo screening length. The amplitude of the oscil-
lations is given by the width of the wire levels � and the
periodicity by their spacing �. For short finite systems
with weaker links to the leads, the oscillations with
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FIG. 3. Conductance as a function of �W for a � ’ 10T0
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FIG. 4. (a) Zero temperature transmission phase shift for a
� ’ 10T0
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maxima in the conductance separated by �=2 will occur
only at extremely low temperatures, and for intermediate
temperatures only sharp peaks separated by �, in the at-
resonance situation, are to be expected.

Finally we analyze the finite size effects on the phase
shift introduced by the QD [15]. We define an energy
dependent transmission as t��!� � 
�!�GD��!� where
GD��!� is the retarded Green’s function for a spin-�
electron in the QD level. The conductance as given by
Eq. (4) is the thermal average of 	1=�

P
�Im
t��!�
. The

phase of the transmission for a spin-� electron, )��!� �
arg
t��!�
, is shown in Fig. 4 for a system with finite
wires. On a large energy scale, the low temperature
behavior of )��!� qualitatively reproduces the results
of Gerland et al. [16], it has a maximum (minimum) for
! � Ed=2 [! � �Ed �U�=2] and a large phase lapse
for ! � 0. This large phase lapse at zero frequency
shows novel features due to the confinement effects. A
zoom of the low frequency details in Fig. 4(b), shows the
behavior of )��!� for ! & � with a superstructure con-
sistent with that of the Kondo peak. These effects in the
transmission phase shift may affect the current in
Aharonov-Bohm interferometers with two arms and an
embedded QD.

In this Letter we have shown how the transport proper-
ties change when the QD is connected to finite quantum
wires. In particular, the behavior of the system is very
sensitive to the length of the quantum wires and to the
position of the Fermi level relative to the structure of
the local density of states. The confinement introduces
anomalous features in the temperature dependence of the
conductance and the energy dependence of the phase
shift. For long wires (T0

K > �), the Kondo effect is nearly
fully developed at the temperatures the level spacing of
the wires becomes a relevant energy scale. The finite size
effects, as the nonmonotonous behavior of the conduc-
tance observed at low temperature are related to the
quantization effects of the wire and not to the Kondo
physics. The conductance oscillations observed at very
low temperatures as a function of �F have the maxima
with a period �=2 that are related to the energy levels of
the 2L length wire (the QD acts as a perfect link) being
216801-4
aligned with the Fermi level. For short wires, the Kondo
effect is strongly dependent on the position of the Fermi
level relative to the structure of the density of states. In
the off-resonance situation, the Kondo effect is sup-
pressed and the Kondo temperature is much smaller
than that of the reference system. At intermediate tem-
peratures the conductance at the off-resonance situation
is small due to the Coulomb blockade and the oscillations
have now the maxima only at the at-resonance situation,
i.e., with a period �.

For single channel wires in the Kondo regime the
response of the system depends on whether the Kondo
screening length is shorter or larger than the quantum
wire length. The finite size effects are also present in
the Coulomb blockade peaks of the conductance, and in
the general case they will manifest as an asymmetry
between peaks.
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