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Fractionalized Fermi Liquids
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In spatial dimensions d � 2, Kondo lattice models of conduction and local moment electrons can
exhibit a fractionalized, nonmagnetic state (FL�) with a Fermi surface of sharp electronlike quasi-
particles, enclosing a volume quantized by ��a � 1��mod 2�, with �a the mean number of all electrons
per unit cell of the ground state. Such states have fractionalized excitations linked to the deconfined
phase of a gauge theory. Confinement leads to a conventional Fermi liquid state, with a Fermi volume
quantized by �a�mod 2�, and an intermediate superconducting state for the Z2 gauge case. The FL� state
permits a second order metamagnetic transition in an applied magnetic field.
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natural extension of our results to magnetic states). It is
widely accepted [1,3–7] that such a ground state of H is a

sider here only the simplest case of a Z2 gauge group
[11,12], in which case the Z2 FL� state possesses a gap
The physics of the heavy fermion metals, intermetallic
compounds containing localized spin moments on d or f
orbitals and additional bands of conduction electrons, has
been of central interest in the theory of correlated electron
systems for several decades [1–3]. These systems are
conveniently modeled by the much studied Kondo lattice
Hamiltonian, in which there are exchange interactions
between the local moments and the conduction electrons,
and possibly additional exchange couplings between the
local moments themselves. To be specific, one popular
Hamiltonian to which our results apply is

H � �
X

j;j0
t�j; j0�cyj�cj0� 	
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Here the local moments are S � 1=2 spin ~SSj, and the
conduction electrons cj� (� �"# ) hop on the sites j, j0

of some regular lattice in d spatial dimensions with
amplitude t�j; j0�, JK > 0 are the Kondo exchanges ( ~��
are the Pauli matrices), and explicit short-range
Heisenberg exchanges, JH, between the local moments
have been introduced for theoretical convenience. A
chemical potential for the c� fermions which fixes
their mean number at �c per unit cell of the ground
state is implied. We have not included any direct cou-
plings between the conduction electrons as these are
assumed to be well accounted by innocuous Fermi liquid
renormalizations.

For simplicity, we restrict our attention here to non-
magnetic states, in which there is no average static mo-
ment on any site (h ~SSji � 0), and the spin rotation
invariance of the Hamiltonian is preserved: The ~SSj mo-
ments have been ‘‘screened,’’ either by the c� conduction
electrons, or by their mutual interactions (there is a
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conventional Fermi liquid (FL) with a Fermi surface of
‘‘heavy’’ quasiparticles, enclosing a volume, V FL, deter-
mined by the Luttinger theorem:

V FL � Kd��a�mod 2��: (2)

Here Kd � �2��d=�2v0� is a phase space factor, v0 is the
volume of the unit cell of the ground state, �a � n‘ 	 �c
is the mean number of all electrons per volume v0, and n‘
(an integer) is the number of local moments per volume
v0. Note that �c;a need not be integers, and the (mod 2) in
(2) allows neglect of fully filled bands. In d � 1, (2) has
been established rigorously by Yamanaka et al. [5]. In
general d, a nonperturbative argument for (2), assuming
that the ground state is a Fermi liquid, has been provided
by Oshikawa [6], who also emphasized that the Luttinger
theorem can be regarded as a ‘‘quantization’’ of V FL.

The primary purpose of this paper is to show that there
exist nonmagnetic, metallic states (FL�) in dimensions
d � 2 with a Fermi surface of ordinary S � 1=2, charge
�e, sharp quasiparticles, enclosing a volume

V FL� � Kd���a � 1��mod 2��; (3)

over a finite range of parameters. For n‘ � 1 V FL� is
determined by the density of conduction electrons alone.
A number of earlier works [8–10] have considered a
Fermi surface of conduction electrons alone, decoupled
in mean field from the local moments. Here we establish
the conditions under which (3) characterizes a stable
phase of matter for generic couplings, beyond simple
decoupled models. One of our findings is that any
FL� state must be fractionalized [11], i.e., it possesses
S � 1=2 neutral spinon excitations (which are entirely
distinct from the Fermi surface quasiparticles) which
carry a charge under a gauge group which character-
izes the topological order in the FL� state. We will con-
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to topologically nontrivial ‘‘vison’’ states [11,13,14]
which carry Z2 flux. The connection with a Z2 (or other)
gauge theory explains why the FL� is not possible in
d � 1: A translationally invariant deconfined phase of
the gauge theory is only present for d � 2. We will also
discuss the quantum transition between the Z2 FL

� state
and the conventional FL state as the exchange couplings
are varied: This transition is preempted by a supercon-
ducting state.

We note that the FL� state does not contradict the
nonperturbative computation by Oshikawa [6] of V FL;
on the contrary, this argument helps establish the intimate
connection between (3) and topological order. Oshikawa
placed the system on a torus, and considered the adiabatic
evolution of the ground state upon threading a magnetic
flux of hc=e felt by the electrons with spin up (in some
basis) through one of the holes of the torus. For insulating
antiferromagnets with a fractionalized spin liquid ground
state [a resonating valence bond (RVB) state], this proce-
dure connects two of the topologically distinct states
which become degenerate in the thermodynamic limit
in a toroidal geometry [14–16]; i.e., it connects states
with and without a vison threading the hole of the torus.
The FL� state of the Kondo lattice models we are discus-
sing here has a similar topological order, and the toroidal
system has global vison excitations which are degenerate
with the ground state in the thermodynamic limit.
Oshikawa did not consider such excitations, and included
only the electronlike Fermi surface quasiparticles. Con-
sequently, his argument does not directly apply to the
FL� state, and a modification accounting for vison exci-
tations shows that the volume V FL� is allowed. In other
words, the Fermi volume is still quantized, but differently
from that in a Fermi liquid.

The volume V FL is observed in many compounds, and,
in particular, in those with weak direct exchange JH
between different local moments. Doniach [17] pointed
out that increasing JH would lead to magnetically ordered
states. However, the effective exchange interactions be-
tween the local moments are strongly frustrated in many
common lattices, so that the magnetic order may be very
fragile or entirely absent: It is these frustrated systems
which are favorable candidates for displaying a nonmag-
netic FL� state. The generic appearance of superconduc-
tivity in the crossover between the Z2 FL

� and FL states is
experimentally significant: This may be regarded as a
proposed ‘‘mechanism’’ for superconductivity in heavy
fermion systems, which bears some similarity to the RVB
theory [18]. The critical temperature (T) for the onset of
superconductivity, Tc, can be small.

The T > 0 behavior of the Z2 FL
� state depends on d,

as discussed for other fractionalized states in Ref. [11]. In
d � 3, there is a finite temperature phase transition asso-
ciated with the onset of topological order. This is absent
in d � 2 where the topological order is present only at
T � 0. In layered quasi-two-dimensional materials, both
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types of behavior (corresponding to two distinct T � 0
phases) are possible.

To understand the origin of our results in the context of
(1), consider first the limiting case JK � 0, when the c�
fermions and the ~SSj spins are decoupled. While the c�
fermions will occupy states inside a Fermi surface en-
closing volume Kd��c�mod 2��, there are two distinct
classes of possibilities for a nonmagnetic ground state
for the ~SSj spins interacting via JH.

The first is a ground state with confinement of spinons
and a unit cell with n‘ even; this may require breaking of
translational symmetry by the appearance of bond order
[19]. In this case �a � �c�mod 2�, and turning on a finite
JK leads to a FL state, possibly with coexisting bond
order, with the Fermi volume V FL equal to that at JK � 0.

The second possibility, of central interest in this paper,
is that ~SSj moments form a fractionalized spin liquid
ground state with n‘ odd [11,12,20]: This happens on
frustrated lattices, as has been supported by studies [21]
on the triangular lattice. A fundamental property of such
a state is its topological stability [11], and the associated
gap towards creation of vison excitations which carry unit
flux of a Z2 gauge field. The S � 1=2 spinon excitations
above this state carry a unit Z2 gauge charge. Now turn
on a small JK � 0. The key argument of this paper is that
the resulting ground state is smoothly connected to the
JK � 0 limit: The quantum numbers of the latter state
and its excitations are topologically protected, the vison
gap will survive for a finite range of JK values, and
perturbation theory in powers of JK is nonsingular. So
we obtain our advertised FL� state, with a Fermi surface
of spin-1=2, charge �e, quasiparticles enclosing the vol-
ume V FL� equal to that at JK � 0, along with a separate
set of spin-1=2 neutral spinon excitations [22]. Physically,
each local moment has formed a singlet with another
local moment in an RVB spin liquid state — the Kondo
coupling with the conduction electrons is ineffective in
breaking these singlets. The Fermi surface quasiparticles
have a weak residual interaction, arising from exchanges
of pairs of spinons, which could lead to their pairing in a
high angular momentum channel at some very low T:
This produces an exotic superconductor which coexists
with a fractionalized spin liquid [23] which we will not
discuss further — the superconductivity discussed else-
where in this paper is more robust and a qualitatively
different state.

As we continue to increase JK, the physics of the Kondo
effect will eventually be manifest: It will become favor-
able for a local moment to form a Kondo singlet with the
conduction electrons rather than with other local mo-
ments. This may be formalized as follows, for the case
in which the spinons are fermions: Representing the ~SSj
moments by S � 1=2 fermions fj� ( ~SSj � fyj� ~����0fj�0=2
with the single-occupancy constraint fyj�fj� � 1), the
formation of Kondo singlets is signaled by a nonzero
hybridization between the f� and the c� fermions. This
216403-2



0 1 2 3 4

Kondo coupling JK

0

0.05

0.1

0.15

0.2

0.25

T
em

pe
ra

tu
re

 T

Z2 FL*

Superconductor

FL

decoupled

FIG. 1. Mean-field phase diagram of H on the triangular
lattice. We used fermionic representations of Sp�N� for the
spins, and restricted attention, by hand, to saddle points which
preserve all lattice symmetries. We had nearest-neighbor t � 1,
JH � 0:4, and �c � 0:7. The superconducting Tc is exponen-
tially small, but finite, for large JK, while it is strictly zero for
small JK . Thin (thick) lines are second (first) order transitions.
The transitions surrounding the superconductor will survive
beyond mean-field theory, while the others become crossovers.
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can be expressed more precisely in terms of the composite
boson fields B1 � fy�c� and B2 � "��

0
f�c�0 , where " is

the antisymmetry tensor with ""# � 1. Both of these
fields have a unit Z2 gauge charge, an electromagnetic
charge e, and are spin singlet: Condensation of these
bosons implies a nonzero amplitude that a local moment
has formed a Kondo singlet with the conduction electrons.
This condensation indicates that the Z2 gauge theory
enters a Higgs phase which can also be identified with a
phase in which Z2 charges are confined [24]. Moreover, as
the spinon pairing amplitude h"��

0
f�f�0 i is generically

nonzero in the small JK fractionalized phase [11], the
condensation of B1 implies condensation of B2 (and vice
versa), and there is only a single Z2 confinement transi-
tion. More importantly, the pairing of the spinons and the
condensation of B1;2 implies that the resulting phase also
has pairing of the conduction electrons, and is a super-
conductor at T � 0.

Consider now the behavior when JK, t � JH. In
the limit JH � 0, the usual FL state is expected (at least
at generic incommensurate conduction electron den-
sity). Turning on a weak nonzero JH potentially intro-
duces a weak instability toward superconductivity, as
will be the case in our mean-field theory below.
However, the FL state may still be stabilized by a weak
nearest-neighbor repulsive interaction between the con-
duction electrons.

The general considerations above can be illustrated by
a simple mean-field computation of the phase diagram of
H. We applied the large N method associated with a
generalization of H to Sp�N� symmetry [25] on the tri-
angular lattice. It is important to note that both the
symmetry group and the lattice have been carefully
chosen to allow for a mean-field state with Z2 topological
order, stable under gauge fluctuations [12]; in particular,
there are topologically distinct mean-field ground states
in a toroidal geometry, differing in the Z2 flux through
the holes of the torus. Other choices [8] for the lattice or
the symmetry group lead to mean-field solutions which
are generically disrupted by U(1) or SU(2) gauge fluctua-
tions in d � 2. We used self-conjugate, fully antisymmet-
ric (fermionic) representations for the spin states, and the
computations were then similar to earlier work on the t-J
model [25]. For JK � 0 and nearest-neighbor JH, these
representations yields globally stable solutions in which
the ~SSj spins are paired in fully dimerized states which
break lattice symmetries. As we are not interested in such
states here, we restricted our analysis to saddle points
which preserve all lattice symmetries. Such RVB saddle
points can be stabilized by additional couplings be-
tween the local moments; they are also stable for nearest-
neighbor JH for bosonic spin representations [25,26], but
these, unfortunately, do not allow a simple description of
the FL state at large JK. It is possible that the spinons
undergo a change from bosonic to fermionic statistics
with increasing JK within the FL� state, but this will
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not be captured by our present mean-field theory which
has only fermionic spinons.

The phase diagram is shown in Fig. 1 as a function of
JK and T for fixed JH, t, and �c. In addition to the Z2 FL

�

and FL states, and an intermediate superconducting state,
whose character we have already discussed, there is also a
high temperature ‘‘decoupled’’ state. Here, in the mean-
field saddle point, the spins are mutually decoupled from
each other, and from the conduction electrons. This de-
coupling is, of course, an artifact of the saddle point, and
it points to a regime where all excitations are inco-
herent but strongly interacting with each other. For the
case where the superconducting phase is present only at
very low temperatures (as may well be the case beyond
mean-field theory), this incoherent regime represents the
quantum-critical region of the Z2 FL�-FL transition. A
separate description of this incoherent quantum-critical
dynamics was provided by the large-dimensional saddle
point studied by Burdin et al. [10], where it was related to
the gapless spin liquid state of Ref. [27].

An interesting T � 0 quantum phase transition appear-
ing in Fig. 1 is that between the FL� and superconducting
states. As we discussed earlier, this transition is associ-
ated with the condensation of the charge e bosons B1;2. A
critical theory of the transition can be written down in
terms of B1;2 and the conduction electrons: The methods
and resulting field theory are identical to those discussed
in Ref. [28]. The renormalization group analysis shows
that the T � 0 transition can be either first or second
order, depending upon the values of microscopic parame-
ters. The gapped vison excitations in the FL� state may be
detected through the flux trapping experiments discussed
216403-3
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in Ref. [29]. Furthermore, provided the transition is not
too strongly first order, the presence of a critical charge e
bosonic mode implies that the superconducting state in
the vicinity of this transition is a candidate for displaying
stable hc=e vortices [11,30].

Interesting physics is obtained in the presence of an
external uniform Zeeman magnetic field in the FL� state.
As the local moment and conduction electron systems are
essentially decoupled in this phase, they both respond
independently to the magnetic field. If the spinons are
gapped in the fractionalized phase, then there would be a
critical field Bc associated with the onset of magnetiza-
tion in the local moment system. Experimentally, this
would be seen as a ‘‘metamagnetic’’ transition in the
response of the system to an applied field. Interestingly,
this onset transition could clearly be generically (i.e.,
without any fine tuning) second order. Metamagnetic
quantum criticality in strongly correlated systems has
been the subject of some recent experimental [31] and
theoretical studies [32], although accidental fine tuning
has been invoked to obtain a second order transition.

This paper has established that metals with local mo-
ments in dimensions d � 2 can have nonmagnetic ground
states (FL�) which are distinct from the familiar heavy
Fermi liquid state (FL). The latter state has a Fermi
surface enclosing a volume V FL determined by the den-
sity, �a, of both the conduction electrons and local mo-
ments; our topologically ordered FL� state has sharp
electronlike excitations on a Fermi surface enclosing a
volume V FL� determined by ��a � 1� (for n‘ � 1 this is
the density of conduction electrons alone), along with
additional ‘‘fractionalized’’ excitations. In between these
FL and FL� states, a plethora of additional states associ-
ated with magnetic, superconducting, and charge order
appear possible, along with nontrivial quantum-critical
points between them. We believe this rich phenomenology
should find experimental realizations in the heavy fer-
mion compounds.
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