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‘‘Devil’s Staircase’’ in Pb=Si�111� Ordered Phases
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With scanning tunneling microscopy we have found that ordered phases in Pb=Si�111� are one of the
best examples of the ‘‘devil’s staircase’’ phase diagram. Phases within a narrow coverage range (1:2<
� < 1:3 monolayers) are constructed with the rules similar to the ones found in theoretical models.
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Self-organization on surfaces is of great recent interest
because it results in atomic scale regular structures, which
are of fundamental and technological importance. Self-
organized structures are manifested whenever the system
can spontaneously select the preferred structure size and
geometry. A common condition to attain such selectivity
is the presence of competing interactions. For the special
case of interactions which have competing periodicities
an exceedingly rich set of closely related phases (in cover-
age and spatial modulation) can form [1–4]. Theoretical
models where competing interactions produce such struc-
tures are the 1D Ising model with long range repulsive
interactions [5], a 1D chain of electrons experiencing
Coulomb interaction [6], and the ANNI model of dimen-
sionality d > 2 with short range interactions of compet-
ing sign [7]. Although the experimentally realized phases
have seemingly complex forms, they are built with simple
formation rules. On the practical side, these phases can
provide in principle, an infinite number of well-ordered
substrates to be used as initial templates for growth or as
testing grounds of the physics of low dimensional elec-
tron systems.

The problem of systems with competing periodicities is
commonly described in terms of a periodic potential U
and a nonperiodic interaction J�x�. For the special case of
a convex interaction J�x� [i.e., d2J�x�=dx2 < 0] a highly
complex phase diagram, i.e., a ‘‘devil’s staircase,’’ is
generated consisting of numerous spatially modulated
phases which vary infinitesimally in coverage and modu-
lation wave vector. The experimental realization of the
predicted phases, especially in two dimensions, is a major
experimental challenge, despite outstanding theoretical
predictions [1–4].

In general, in systems with competing periods two
periodic functions are necessary to specify the atom
location, one related to the substrate lattice constant a0
and the other period ai incommensurate to a0 [4]. Such
mixed periodicities produce ordering wave vectors k �
2
�s=a0 � t=ai� where s; t are integers. X-ray and neu-
tron scattering have been used to identify devil’s staircase
phases in 3D systems [8,9]. Diffraction is also ideally
suited for temperature dependent measurements to de-
duce the nature of the commensurate-incommensurate
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It is also possible to use real space techniques to iden-
tify phases which differ infinitesimally in coverage. As
we show below this is done with scanning tunneling
microscopy (STM) in the coverage range 1:2< �<
1:3 ML (monolayer) close to the dense Pb=Si�111�-
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phase. The STM can directly detect small increments
in the unit cell size while the adatom location with
respect to the substrate atoms is deduced easier by dif-
fraction [12].

Although the dense Pb=Si�111�-
���
3

p
�

���
3

p
phase has

been extensively studied, conflicting results exist in the
literature. Recently we have identified experimentally
and confirmed with first principles calculations the atom
position, domain wall arrangement, and stoichiometry of
the phase [13]. The interior of the domains is built out of���
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unit cells while the domain walls consist essen-
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unit cells with the coverages of 4=3 and

6=5 ML, respectively.
Figure 1 shows an image over a large 100 nm� 100 nm

area of a few terraces covered with a 1D phase of three
equivalent orientations. This particular phase has a 9����
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unit cell built out of one
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cells with coverage � � �4� 18�=�3� 15� � 1:222 ML.
For tunneling voltage 1.5 V, the
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is seen as two

adjacent bright rows, while the
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phase is imaged

as long dark rows, because only Pb atoms at H3 positions
are seen.

The experimental evidence that a system displays a
devil’s staircase is to observe the presence of as many
phases as possible, constructed hierarchically, within a
narrow ��. We show in Figs. 2 and 3 only small rectan-
gular segments of the different phases observed. Each
phase consists of dark rows (
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phase) and bright

double rows (
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phase). Although only small areas

are shown, the phases extend over the whole terrace as
seen in Fig. 1. In Fig. 2 we show eight phases in the range
1:2 � � � 1:25 ML and in Fig. 3 we show four phases in
the range 1:2 � � � 1:3 ML.

Stronger evidence that these phases are a realization of
the devil’s staircase is the simple formation rules, similar
to the formation rules in the theoretical models: they are
built from a combination of n�
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unit cells with n;m integer numbers. For example, the
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FIG. 2. Linear phases observed in the range 1:2<� �
1:25 ML: (a) n � 1; m � 1 � � 1:25 ML; (b) n � 2; m � 1
� � 1:2307 ML; (c) n � 3 and 2, m � 1 � � 1:2226 ML;
(d) n � 3; m � 1 � � 1:222 ML; (e) n � 4 and 3 m � 1 � �
1:2203 ML; (f) n � 4; m � 1 � � 1:217 ML; (g) n � 7 and 5
m � 1 � � 1:21 ML; (h) n � 1; m � 0 � � 1:2 ML.

FIG. 1. 100 nm� 100 nm differential STM image showing
the nucleation of three equivalent domains of the linear
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phase (n � 3; m � 1) on adjacent terraces. For tunneling volt-
age V � 1:5 V bright rows correspond to
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and dark

rows to
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arrays of unit cells.
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by the string of successive values of n ‘‘3233233233,’’ i.e.,
the number of
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Figure 4 shows schematically a ball model of the
Si(111) surface illustrating the different types of unit
cells. At the top the
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(right) and the
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(left) unit cells are shown. The unit cell shown in the
middle is for the n � 3; m � 1 phase and the one below is
for the n � 2; m � 1 phase.

We summarize theoretical predictions [5–7,14] about
the � vs � dependence of the regular devil’s staircase,
with � the coverage of the pattern forming atoms (to be
distinguished from the experimental coverage � � 1�
�). It was shown that a ‘‘complete’’ staircase includes all
phases with coverage � � p=q corresponding to any ir-
reducible rational number p=q between the coverages
�1; �2 of the two generating phases. The lengths of the
unit cells of the two generating phases differ by 1, i.e., q1
and q1 � 1 (with 	�1 � 1=q1; �2 � 1=�q1 � 1�
).

Because of the convexity condition on J�x�, the energy
of the system is a minimum, when the separation between
neighboring atoms can take only two values: either
integfq=pg or integf�q=p�g � 1 with the function integ
denoting the integer part of the fraction q=p. In addition
if the p atoms are indexed by j in the sequence
f1; 2; . . . ; j; . . . ; pg, it can be shown that the separation
between any two jth neighbors must take only two values
integfjq=pg or integf�jq=p�g � 1.

We have earlier identified as the two generating phases
the

���
3

p
�

���
3

p
and

���
7

p
�

���
3

p
phases. Because of the large

lattice mismatch between the Si and Pb lattice constants,
a stress mediated interaction J�x� � 1=jxj� holds effec-
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tively between the high symmetry atoms. This implies
that �1 � 1=5 ML (for the
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with � � 1:2 ML)

and �2 � 1=3 ML (for the
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phase with � �

1:33 ML) since � � 1� �. As shown in Fig. 4 the high
symmetry Pb atoms occupy H3 sites [12]. The geometric
constraint imposed by the Si(111) substrate adds a novel
feature to the system and generates a different devil’s
staircase. Adjacent corner atoms in the unit cells are
shifted by
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a0=2 in the 	1 1 2
 and by an odd number

of a0=2 in the 	110
 direction. For example the length of
the
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unit cell in the 	110
 direction is q1 � 5 and

the length of the
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unit cell is q2 � 3 in units of

a0=2. This novelty has important implications about the
stability and structure of the devil’s staircase since the
unit cells of the generating phases differ by two lattice
216106-2



FIG. 3. Linear phases in the range 1:25<�< 1:3 ML: (a)
n � 1; m � 1 and 2 � � 1:263 ML; (b)n � 1; m � 2 � �
1:27 ML; (c) n � 1; m � 3 and 2 � � 1:28 ML; (d) n � 1; m �
3 � � 1:285 ML.
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constants (i.e., q1 � 3 and q1 � 2 � 5 in units of a0=2)
instead of one as in the regular staircase.

For comparing the two staircases we have determined
the stability range of a phase of coverage � � p=q by
FIG. 4 (color). Schematic model of the Si(111) with several
unit cells of the linear phases:
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(top right),
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(middle n � 3; m � 1),
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(bot-

tom n � 2; m � 1). The Pb atoms at high symmetry positions
(H3) are shown in red. There are 6 Pb, 5 Si atoms in the
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and 4 Pb, 3 Si atoms in the
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unit cell.
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calculating the chemical potential interval �� over
which the phase has the lowest energy [15]. This interval
is determined from the difference of the two energies
���p=q� � E��p=q� � E��p=q� where E� is the energy
change after one atom is added and E� is the energy
change after one atom is removed from the system. We
found that this energy difference can be written as

���p=q� �
1

2

Xl�1

l�1

lqfJ�lq� 2� � J�lq� 2� � 2J�lq�g;

(2)

with q the length of the phase unit cell and l � 1; 2; . . . .
The energy terms in Eq. (2) are evaluated at lq� 2
(instead of lq� 1 for the regular staircase) which
increases ��, because the convexity of J�x� implies
J�lq� 2� � J�lq� 2� > J�lq� 1� � J�lq� 1�.

A second difference of the new versus the regular
staircase is that the unit cell length of phase (m; n) must
be of the form 3m� 5n and therefore the coverage � �
m� n=�3m� 5n�, because it is built with m unit cells of
length 3 and n unit cells of length 5. It can be easily
shown that any rational number 1=5< p=q < 1=3 can be
written in this form with m=n � �5p� q�=�q� 3p�, so
phases with all rational numbers p=q are realized.
However if the numbers (5p� q) and (q� 3p) do not
have a common denominator then m � 5p� q, n � q�
3p and the length of the unit cell is q � 3�5p� q� �
5�q� 3p� � 2q. This occurs when p and q are of oppo-
site parity, otherwise when they both are odd,
q � q. For the regular staircase always q � q.

The two differences between the new and the regular
staircase, i.e., the change of lq� 1 into lq� 2 in Eq. (2)
and the doubling of the unit length when p and q have
different parity, have opposite contributions to ��.
Phases of period 2q (when p and q have opposite parity)
have smaller ��, while phases with p and q odd have
larger �� in the new versus the regular staircase for
which a period is always q. One obvious consequence of
this, shown in Fig. 5 for the case � � 2, is that the new
staircase is steeper than the regular one.

How close are the experimental results shown in Figs. 2
and 3 to the theoretical predictions? First, as already
mentioned, we see 12 closely related phases within ���
0:1 ML which is one of the largest number of phases
observed so far [16,17]. As stated above the frequency
of observing a phase increases as its unit cell size
decreases. Our data qualitatively confirm this predic-
tion, since no phases with unit cells larger than n > 8
(for m � 1) and m > 3 (for n � 1) are seen.

The predicted changes in �� for the new staircase are
in excellent agreement with observations. For example,
phases with n � 2; m � 1 (� � 3=13 ML) and n �
1; m � 2 (� � 3=11 ML) are more stable than the phases
with � � 2=9 ML and � � 2=7 ML despite their larger q.
This is a property of the new staircase because of the
216106-3



FIG. 5 (color). Comparison of the regular (red) versus the
new (unit cells of lengths 3 and 5) staircase for the range 1=5<
� < 1=3 and interaction energy J�x� � 1=jxj� with � � 2. The
stability intervals �� of the new staircase for phase with
coverage p=q (with p; q odd) are longer, while for all other
coverages are shorter, than the corresponding intervals of the
regular staircase.
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effect of parity as discussed before. It should be stressed
that these phases are the ones more commonly seen in
experiments, i.e., the
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respectively [13]. In addition, because of the higher steep-
ness of the novel staircase (because the 1=5 and 1=3
phases have larger ��), phases of larger unit lengths
have smaller stability differences which can account for
the presence of mixed phases.

Since the experimental chemical potential ��F; T�x��
varies slightly with surface location x (either because of a
small temperature gradient dT=dx � 0 or because of
defects), phases with both n;m larger than 1 do not
show always the theoretically expected sequence error
free. For example, we observe the string for m � 1 and
variable n � 2 or 3,‘‘33223222333232333333,’’ with cov-
erage � � 398=325 ML; a slightly rearranged pattern
with the same �, ‘‘33233233233233233232‘‘ i.e., the
phase with n � 8 and m � 3) has lower energy. The
presence of ‘‘wrong’’ strings is a result of the finite
temperature, which makes the probability of string con-
figurations of slightly higher energy small but nonzero. In
addition, the real system is two dimensional (although the
phases which form are linear) while the theoretical mod-
els are one dimensional. Because of the two dimension-
ality, kink excitations along the
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rows are

sometimes seen.
These linear highly equilibrated commensurate struc-

tures can also explain the formation of phases studied in
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the literature [13,18,19]: the ‘‘hexagonal incommensurate
phase’’ and ‘‘striped incommensurate phase’’ built from
the
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phase in the interior and the
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phase

in the domain walls, fluctuating at higher temperature.
We have presented evidence that the linear Pb=Si�111�

structures in the range 1:2<�< 1:3 ML observed at low
temperatures with STM are one of the best realization of
the devil’s staircase in two-dimensional overlayers. This
is supported from the multitude of phases ( � 12) clearly
resolved with the STM within a narrow coverage range
��� 0:1 ML and the similar rules obeyed in how the
phases are constructed by combining unit cells of the two
generating phases. However because the Si(111) geometry
requires the use of generating phases which differ by two
lattice constants, a novel staircase of different stability
and mathematical structure results.
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