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Numerical Experiments on Free-Electron Lasers Without Inversion
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The inversionless free-electron laser having a drift region consisting of two magnets is analyzed.
Performing numerical simulations of electron motion inside wigglers and the drift region, we have
shown that this system has a positive mean gain over the entire energy distribution of the electron beam.
We study the influence of emittance and the spread of electron energies on the gain.
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for the essentially two-dimensional electron dynamics in
the drift region, which is needed for the FELWI phase FIG. 1. A FELWI setup.
In a free-electron laser (FEL) [1,2], the accelerated
motion of electrons in the ‘‘pondermotive potential’’ of
the combined field of the wiggler and the laser produces
coherent stimulated radiation. Under the influence of the
pondermotive potential, a grating in the spatial density of
electrons (‘‘bunching’’) on the scale of the laser wave-
length is produced. As a result net emission is enhanced.
FELs are able to produce radiation in widely different
frequency domains: from microwaves [3] to x rays [4].
They are used for spectroscopy, laser surgery, material
research, and the production intense x-ray beams.

A main limitation on the gain, both for small-gain and
large-gain regimes, is set by the spread in the longitudinal
momentum of the electrons in the beam. For this reason,
much effort has been devoted to producing highly mono-
energetic electron beams [5].

Recently, new approaches to increasing the gain in
atomic lasers, based on coherence and interference, have
been the subject of investigation [6]. This concept has
interesting implications for the free-electron laser with-
out inversion (FELWI) as well, even though it is a purely
classical rather than quantum device [7].

The FELWI is conceptually implemented via interfer-
ence of the radiation from two wigglers and an appropri-
ate phasing of the electrons in the drift region between
the wigglers [8–11] (shown in Fig. 1). Let us note here that
an optical klystron also utilizes a two-stage setup [12],
which allows one to increase the maximum gain, but the
average gain is zero. The important difference between
these two concepts is that the drift region of the FELWI
and the dispersion region of the optical klystron have
significantly different phase-shift functions.

It was shown that a FELWI requires a correlation
between the electron energy change in the first wiggler
and the transverse electron velocity [13,14]. A noncol-
linear FEL geometry provides this correlation and allows
0031-9007=03=90(21)=214802(4)$20.00
control [15,16]. It was shown that the FELWI is consistent
with Liouville’s theorem as well as the generalized
Madey’s theorem [15]. However, it has not been clear
from Refs. [13–15] that a realistic drift region can pro-
duce the phase shifts to implement FELWI.

In this Letter we report the results of numerical experi-
ments which have been performed by using a drift region
consisting of two bending magnets (defocusing TM1 and
focusing TM2) as shown in Fig. 1. Simulating the motion
of electrons in the wigglers and in the drift region, we find
the gain dependence on the energy of the electrons which
is depicted in Fig. 2(a) and represents the main result of
the paper. It is clear that the average FELWI gain is
positive in contrast with an ordinary FEL [Fig. 2(c)] or
an optical klystron (OK) which is obtained by removing
the bending magnets from the drift region and adjusting
the wigglers in a linear configuration [Fig. 2(b)]. The gain
for FEL and OK is positive for some energies and negative
for other energies, and the average gain over energy is
zero. Let us note here that for the ordinary FEL the
electron beam should have higher energy than the reso-
nant energy to have gain, and this may be viewed as the
inversion condition for the electron beam; in the same
sense, the FELWI concept overcomes this condition.

We note also that we consider a small-gain small-
signal regime, not a high-gain one. Thus, our numerical
simulation allows us to confirm the results of previously
published work on this subject [14,15]. In particular, we
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FIG. 2. Gain dependences on electron beam energy with
different beam emittances. Plots (a) are obtained for FELWI;
(b) for OK; (c) for FEL. Curves (1), (2), and (3) correspond to
emittances %�1� � 10�2%0, %�2� � 10�1%0, %�3� � %0 correspond-
ingly, where %0 � 2�	 10�6 m rad is the emittance of the
electron beam available at the Synchrotron Light Source
Accelerator in Armenia [17].
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demonstrate that the gain in a FELWI for an electron
beam having a broad spread of energies is 2 orders of
magnitude larger than that for ordinary FELs, and, con-
sequently, one can use much weaker electron beams to
obtain lasing.

We solve the FEL equations of motion with z as the
independent variable and the longitudinal motion de-
scribed in terms of the slow phase  and the relativistic
factor �. The electromagnetic fields are given by

~AA L �
~eey���
2

p ALei�kLz��Lt� 0� � c:c:; (1)

~AAW �
~eey���
2

p BWei�kWz� � c:c:; (2)

where kL � �2�=�L� and �L are the wave vector and the
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frequency of the laser field, respectively, and kW �
�2�=�W� is the wave number of the wiggler field. The
Hamiltonian is given by

H � ��kW � kL� �
�L
c
��2 � 1� � ~pp� e ~AA�2�1=2; (3)

and it leads to the following equations of electron motion
averaged over the wiggler period:

d�
dz

� �kL
aW ~aaLfB

�
sin�; (4)

d 
dz

� kW � kL
1� p2

x � p2
y � a2W � 2aW ~aaLfB cos�

2�2 ;

(5)
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where

aL �
eAL
mc

; aW �
eBW
mckW

; (8)

and aL � ~aaLei�L ,  � �kL � kW�z� �Lt�  0, � �  �
�L, and fB is the coefficient depending on the type of
wiggler. The field equation, in the paraxial and the slowly
varying envelope approximation, is given by
�
@
@z

�
1

2ikL
r2

?

�
~aaLei�L � ig

XN
j�1

!�x� xj�!�y� yj�

	
aWe�i j

�j
; (9)

where

g �
ez0
mc2

fB
2kL

I
N

is the coupling constant describing the interaction be-
tween the laser field and the electrons; here z0 is the
vacuum impedance, and I is the electron beam current.

To solve the above set of equations numerically, we
utilize the FEL numerical simulation code TDA3D [18].
The electron dynamics as dealt with by the code is fully
three dimensional. The radiation field however is assumed
to have radial symmetry, i.e., aL � ~aaL�r; z�ei�L�r;z�.
The initial conditions for the simulation are specified
by the six-dimensional phase-space distribution function
F��;�; px; x; py; y� at the entrance to the wiggler
(at z � 0). This distribution is assumed to factorize as
F��;�; px; x; py; y� � F����F����Ft�px; x; py; y�, where
F� and Ft are usually taken to have Gaussian profiles, and
the phase distribution F� is uniform. The loading of N
particles is done using Halton sequences with different
prime number bases.
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First, to confirm that the results of Refs. [14,15] are
correct, it will be instructive to use the program TDA3D, to
reproduce the gain of FEL, 1D-FELWI, and FELWI by
introducing phase shifts, similar to the ones suggested in
Ref. [15]. Namely, introducing the relative detuning � �
��� �r�=�r as the difference of electron energy from
resonant energy (�0 is the detuning at the entrance of
the first wiggler) we can express the phase shift leading to
the cancellation of absorption for the electrons having
�0 < 0 and to positive gain for �0 > 0 [8]:

�� �

�
�� (�; �0 < 0;
�(�; �0 > 0;

(10)

where ( is a parameter characterizing the dispersion of
the drift region. The gain curve obtained and presented in
Fig. 3(a) shows that the average gain is positive for this
phase shift. To gain insight into the physics, the phase-
space motion studied in [15] demonstrates the way to
achieve this cancellation. Namely, adding � to the phase
of the appropriate electrons in the drift region reverses
their dynamics and removes absorption as a result.

We note that the realization of the phase shift (10) is not
a trivial task, because of its dependence on the entrance
detuning. As it has been shown in [14,15] this can be
achieved by oblique propagation of the laser field with
respect to the electron beam (the two-dimensional motion
allows one to determine the initial detuning).

It is easier to design a drift region which can introduce
the phase shift in the form

�� �

�
�� (�; �< 0;
�(�; � > 0:

(11)

This phase shift also removes the absorption for negative
detunings and retains gain for positive detunings, but it
causes a larger peak of absorption close to the zero
detuning [see Fig. 3(b)]. It appears due to significant
bunching of the electrons (see [15] for details) and,
finally, the average gain for this case is zero in accordance
with either Liouville’s or Madey’s theorems.

Thus, we reproduce the old results of Refs. [14,15] by
using this more sophisticated program, and then, we aug-
ment the program in order to simulate the motion of
electrons in the drift region. The simulation of the drift
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FIG. 3. Gain dependences on electron beam energy (a) for the dri
Eq. (11).
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region has been accomplished using standard methods of
electron beam optics [19]. At the end of the first wiggler,
the phase-space variables of TDA3D are converted to the
customary coordinates used in describing charged par-
ticle beams [19]. The reference trajectory is taken to be
that of a resonance energy electron propagating along the
wiggler axis. Then the electron trajectories are traced
through the drift region with the appropriate first order
transfer matrices for the magnetic components utilized in
the drift region construction. At the exit to the drift
region we revert to the TDA3D variables and restart
TDA3D to compute the effect of the second wiggler.

To implement FELWI, we suggest constructing a drift
region that consists of two inhomogeneous magnets TM1

and TM2. The first one, TM1, is a defocusing magnet with
a B field in the y direction B1y � 0:9	 10�2 T and an
inhomogeneity parameter

N1 � �
1

h1B1y

�
dB1y

dx

��������x�0;y�0
� 3:2;

where h1 � 1=*1, *1 being the radius of curvature of the
reference electron trajectory through the magnet. The
second magnet, TM2, is focusing with B2y � 1:8	
10�2 T and

N2 � �
1

h2B2y

�
dB2y

dx

��������x�0;y�0
� �1:96:

The length of the first magnet is LTM1
� 0:25 m and that

of the second is LTM2
� 0:05 m. The relevant distances

among them and the wigglers (shown in Fig. 1) are as
follows: First wiggler to first magnet LW1TM1

� 0:17 m;
first magnet to second magnet LTM1TM2

� 0:05 m; second
magnet to second wiggler LTM2W2 � 0:05 m.

Our simulations have been carried out with the follow-
ing set of realistic electron beam and wiggler parameters
that are sufficiently close to experimental situations [17]:
electron energy E � 29:35 MeV (� � 15:0), emittance
up to % � 2�	 10�6 m rad, rms beam radius r �
70 ,m, laser wavelength �L � 359 ,m, period of the
wiggler magnets �W � 2:73 cm, number of magnets
per section N � 32, normalized wiggler field
k � �e=mc��Bmax=kW� � 1:27, angle between laser and
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FIG. 4. Gain dependence of FELWI and OK on electron
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electron beam ( � 0:13 rad (( � 7:6
). The laser beam
is directed along the wiggler axis.

We have carefully adjusted the drift region parameters
to find the regime which has the positive average gain.
This small-gain small-signal regime can be referred to as
FELWI and the gain curve is presented in Fig. 2(a). This
is the main result of the paper: we demonstrate the
positive average gain of the system shown in Fig. 1.
Thus, we have proven the validity of the FELWI concept
by direct simulations of electron dynamics inside wig-
glers and the drift region. Note that it is qualitatively
different from the approach developed in Ref. [15], where
the effect of the drift region has been taken into account
by the phase shifts. The finite emittance of the electron
beam has not been taken into account in [13,14,15,20].

The next goal is to demonstrate the tolerance of the
FELWI gain to the electron beam energy spread. For this
!� has been taken to be extremely large, namely, !� �
2:0 while the emittance is % � 2�	 10�6 m rad.
Simulations have been performed to obtain the depen-
dence of the FELWI gain on the electron beam current.
The results are presented in Fig. 4 which shows that the
gain (i.e., the threshold for lasing) is about 2 orders of
magnitude larger than that for ordinary FEL.

Thus, we have found the parameters, such that FELWI
operation occurs, and studied the gain properties of a new
system, for example, its dependence on the emittance,
energy spread, and electron beam current. This allows one
to study the FELWI in high gain with both small-signal
and large-signal regimes, a possibility to obtain short-
wavelength lasing, harmonic generations, etc. This study
is in progress and the results will be published elsewhere.

In conclusion, we have shown that using a two-stage
setup of free-electron lasers with the drift region between
them consisting of two bending magnets allows one to
obtain the gain which has a positive average value over
the electron energies. Using parameters of the electron
beam close to the existing experimental setups, we have
performed numerical experiments showing that the
threshold of such a laser is much lower for the FELWI
configuration than for the usual configuration.
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