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Centrality Scaling of the pT Distribution of Pions
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From the preliminary data of PHENIX on the centrality dependence of the �0 spectrum in pT at
midrapidity in heavy-ion collisions, we show that a scaling behavior exists that is independent of the
centrality. It is then shown that hpTi degrades with increasing Npart exponentially with a decay constant
that can be quantified. A scaling distribution in terms of an intuitive scaling variable is derived that is
analogous to the Koba-Nielsen-Olesen scaling. No theoretical models are used in any part of this
phenomenological analysis.
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FIG. 1. Scaling distribution ��z� showing the coalescence of
five centrality bins of the preliminary data from PHENIX on
�0 production in Au� Au collisions at

���
s

p
� 200 GeV [6]. The
those given by PHENIX [8]. Next, we define, for fixed s
(at 200 GeV),

points labeled by 	 are for ��. The solid line is a fit parame-
trized by Eq. (5).
In a recent paper [1], we reported on the finding of a
scaling property of the pT distribution of pions produced
in heavy-ion collisions that is independent of the collision
energy. Here we present an extension of that scaling
property to include centrality variations and show that
a Koba-Nielsen-Olesen(KNO)-type [2] scaling behavior
exists over the entire range of pT measured. The inves-
tigation is primarily a phenomenological analysis with no
assumptions about the hard and soft collisions, nor about
the parton energy losses.

Recently, a scaling behavior of the transverse-mass
spectrum has been reported in [3]. That work was moti-
vated by color glass condensate and the saturation of the
gluon density in nuclear collisions. Our investigation has
no theoretical motivation other than the search for the
simplest form that can represent the data. The dynamical
origin of the pT distribution is complicated. At low pT ,
the statistical model seems to work well, as does the
hydrodynamical description up to pT � 3 GeV=c [4].
At high pT , hard parton scattering will create jets, which
can lose energy due to multiple scatterings of partons in
the dense medium [5]. A universal description of the
hadron distribution over all pT is nonexistent, if not
meaningless from the point of view of the sectarian
nature of the dynamical theories that claim validities
in different domains. However, if a universal scaling
behavior can be found phenomenologically, it can serve
as a common goal for different dynamical approaches
to aim at.

From the preliminary PHENIX data of �0 produced in
Au� Au collisions at the relativistic heavy-ion collider
[6], we have the pion distribution, �2�pT��1dN�=d�dpT ,
at midrapidity for

���
s

p
� 200 GeV and for a wide range of

centrality that has nine bins from 0%–10% to 80%–92%.
To unify the nine distributions, it is necessary to define a
scaling variable z. First, we use the number of partici-
pants, Npart, to quantify centrality; those numbers for
different bins are taken from [7], which agree well with���p
0031-9007=03=90(21)=212301(4)$20.00 
z � pT=K�N�; (1)

where K depends on Npart, for which we use the
abbreviated notation N � Npart hereafter. For every cen-
trality bin, we vary K by plotting the data of
�2�pT��1dN�=d�dpT in terms of z and adjusting the
normalization so that all data points lie on a universal
curve. That is, we define

��z� � A�N�K2�N�
1

2�pT

dN�
d�dpT

; (2)

and find A�N� and K�N� such that ��z� has no explicit
dependence on N. That turns out to be possible, as evi-
denced by Fig. 1. For clarity, we show only five bins of
centrality in that figure. It is a remarkable property of the
centrality dependence of the pion spectra that such a
universal scaling distribution exists.
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The values of K�N� used to obtain the scaling behavior
are shown in Fig. 2(a) in units of GeV=c. The dependence
of K�N� on N can be well fitted by

K�N� � 1:226–6:36	 10�4N; (3)

such that K�Nmax� � 1 at N � Nmax � 350. The effects of
the degradation of parton momenta are hidden in this
formula. Any change of the overall scale ofK�N� is trivial
and does not affect the scaling behavior that we have
found. Although the normalization factor A�N� does not
have a simple dependence on N, it turns out to depend
simply on the number of binary collisions Nc. The values
of A�Nc� needed to achieve the scaling ��z� are shown in
Fig. 2(b) in a log-log plot. They can be fitted by

A�Nc� � 530N�0:9
c : (4)

From the tables listed in Refs. [7,8], Nc and N can be
related by Nc � 0:44N1:33. Note that the normalization of
��z� is set by the most central bin by choosing A�N� � 1
at N � Nmax. If A�Nc� were to behave as N�1

c , it would
suggest that the average multiplicity of pions at midra-
pidity is proportional to Nc, which is a variable that
measures the number of hard collisions. Thus, the factor
N�0:9
c in Eq. (4) is an indication that the centrality de-

pendence of the midrapidity multiplicity scales as N0:9
c

from the pp collisions, revealing the effect of suppression
of pT in the nuclear medium.

To fit the scaling curve, the �0 data are insufficient to
give us guidance in the small z region, since they do not
extend below pT � 1 GeV=c. For 0<pT < 1 GeV=c, we
use the �� data of PHENIX for 0%–5% centrality [9]
shown in Fig. 1. The combined �0 and �� data can be
well fitted by
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FIG. 2. (a) Scale factor K�N� in units of GeV=c. Solid line is a
fit by Eq. (3). (b) Power-law behavior of the normalization
factor A�Nc�. Solid line is a fit by Eq. (4).
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��z� � 1200 �z2 � 2��4:8�1� 25e�4:5 z�; (5)

which is shown by the solid line in Fig. 1.We can check its
normalization by evaluating the integral,

I �
Z 10

0
dz z��z� � 46:2 �

A�N�
2�

dN�0

d�
: (6)

For N � 200, for instance, this gives dN�0=d� � 149,
which compares satisfactorily to dNch=d�=�0:5N� � 3:2
at the sameN [8]. Since the�
 data do not extend into the
pT > 2 GeV=c region, we do not consider them for cen-
trality analysis here.

The exponential term in Eq. (5) is mainly to fit the
low-z data that contain thermodynamical effects. At
high z, ��z� behaves as a power law that represents the
effects of hard collisions and jet quenching. For all z,
��z� is a succinct summary of all dynamical effects for
all centralities.

In terms of ��z�, it is now possible to have an analytic
expression of the inclusive distribution of the pions in pT
at midrapidity. For convenience, we shall write it in terms
of the momentum fraction x:

x � pT=K0; (7)

where K0 is a fixed scale, beyond which no physics of
interest need be of concern here. We set K0 � 10 GeV=c
for now, although increasing it later, if necessary, is a
simple matter. In view of Eq. (1), we thus have

z � x��N�; ��N� � K0=K�N�: (8)

Converting �2�z��1dN�=dz to the x variable, we define
the corresponding pion distribution to be

H�x;N� � A�1�N���x;N�; (9)

where A�N� � A�Nc�N��. To see the evolution of the pion
distribution with increasing N, it is more enlightening to
study the normalized distribution, defined by

P�x;N� � H�x;N�
�Z 1

0
dx xH�x;N�; (10)

where the upper limit of integration is set to 1 on the
assumption that the contribution from pT > K0 is insig-
nificant. Thus, P�x;N� is the probability distribution of
producing a�0 at x, for which the differential phase space
is xdx due to the 2D nature of ~ppT .

In Fig. 3, we show P�x;N� for four values of N. Note
how P�x;N� decreases at high x but increases at low x,
when N is increased. That is the behavior we expect when
high-pT partons are suppressed, giving rise to low-pT
partons. The crossover occurs at around x � 0:06, corre-
sponding to pT � 0:6 GeV=c.

Such an evolution of the x distribution is reminiscent of
the evolution of the parton distribution in lnQ2 in per-
turbative QCD. Although no precise relationship between
the two has been established, it is known that in the latter
212301-2
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FIG. 3. Probability distribution P�x;N� for four values of N.
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case the analytical description is simpler in terms of the
moments. Thus, let us define the moments

Pn�N� �
Z 1

0
dx xn�1P�x;N�: (11)

From Eqs. (5), (9), and (10), we can calculate the N
dependencies of Pn�N�, which are shown in Fig. 4 for n �
1 to 5. Evidently, lnPn�N� can be well approximated by
linear dependence on N, i.e.,

lnPn�N� � an � bnN: (12)

The slope parameters bn are shown in the inset of the
same figure. The dependence of bn on n is also linear.
Thus, we may rewrite Eq. (12) as
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FIG. 4. N dependence of the moments, Pn�N�, whose log
values are raised by the quantities in the parentheses. The inset
shows the slopes bn, the line being a linear fit.
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d
dN

lnPn�N� � ��n; � � 5:542	 10�4: (13)

This is a very economical way of describing the degra-
dation property of the pion distribution in terms of one
basic parameter �.

A physical interpretation can readily be given for �
when we consider n � 1, for which P1�N� � hxiN , the
average x at N. From Eq. (13), we obtain

hxiN � hxiN0
exp��� �N � N0��; (14)

which exhibits explicitly the exponential decrease of hxiN
with increasing N, a behavior that solidifies our physical
notion of what the dense medium does to hpTi. For N0 �
2 and N � Nmax, we get

hxiNmax
=hxi2 � 0:825; (15)

which gives a quantitative measure of the degree of
degradation. From Eq. (13) it is easy also to show that

d
dN

hxniN
hxinN

� 0; (16)

where hxniN � Pn�N�. Hence, the normalized moments of
P�x;N� are invariant in N. That is a clue to another
invariant form of the distribution.

Before we examine the implications of that clue, we
note that the properties of Pn�N� displayed in Fig. 4 and
described by Eq. (12) cannot be expected to be valid for
arbitrarily large n, since the definition ofPn�N� in Eq. (11)
puts more weight on the high end of x when n is large. Our
cutoff at x � 1, corresponding to pT � K0 � 10 GeV=c,
is based partly on the lack of data at higher pT and partly
on the recognition that the contribution from pT > K0 is
unimportant when n is not too large. To test the validity of
our procedure, we have carried out the analysis for K0 �
20 GeV=c, using the same ��z�, and found that Eq. (13)
remains to be an excellent approximation of the n depen-
dence shown in Fig. 4, and that the value of � is larger by
just 2%, which is less than the experimental errors. Thus,
we claim that our analysis is stable under variations of K0

so long as we consider K0  10 GeV=c and n � 5.
The invariance of the normalized moments in Eq. (16)

suggests that we should consider yet another scaling
variable,

u � x=hxiN � pT=hpTiN; (17)

for any fixed N. Let us now define

��u;N� � hxi2NP�x;N�; (18)

whose moments are defined by

�n�N� �
Z hxi�1

N

0
du un�1��u; N�: (19)

Transforming this integral to an integration over x, we
find that
212301-3
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FIG. 5. Scaling distribution ��u�.
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�n�N� � hxi�nN Pn�N�: (20)

It then follows from Eq. (16), that

d�n�N�=dN � 0: (21)

Hence, �n�N� is independent of N and we have a scaling
function �n, which in turn implies that ��u� is also
independent of N. Indeed, from Eqs. (9) and (10) we see
that (18) can be reexpressed as

��u� � ��z�u��
�Z

du u��z�u��; (22)

where, by virtue of Eqs. (8) and (17),

z�u� � hxiN��N�u: (23)

Although hxiN��N� may appear to depend on N, it ac-
tually is a constant:

� � hxiN��N� � hzi �

R
dz z2��z�R
dz z��z�

� 0:414: (24)

Thus, using z � �u in Eq. (22), we obtain the scaling
function ��u�:

��u� � 2:1	 104�u2 � 11:65��4:8

	 �1� 25 exp��1:864u��: (25)

In Fig. 5, we show ��u� whose shape evidently differs
from that of ��z� at low u because of the difference in the
power-law violating constants. ��u� is a universal form of
all the P�x;N� shown in Fig. 3.

The scaling property of ��u� is analogous to the KNO
scaling of the multiplicity distributions Pm�s� in hadronic
collisions for

���
s

p
< 200 GeV [2]. It was found that in
212301-4
terms of the scaling variable z � m=hmi, where m is the
multiplicity, the KNO function  �z� � hmiPm�s� is inde-
pendent of s. Here, we find that ��u�, defined in Eq. (18),
is independent of centrality when the scaling variable,
u � pT =hpTi, is used. As it is with KNO scaling, we have

huni �
Z
du un�1��u� � 1; for n � 0; 1: (26)

The higher moments are what characterize the scaling
function, and perhaps scaling violation at some point. A
generalization of the scaling property to include varia-
tions in both energy and centrality is considered in
Ref. [10].

It should be emphasized that no theoretical models have
been used in any part of this investigation. The discovery
of a scaling behavior over the whole pT range that has
been measured offers a simple form of the pT distribution
for dynamical models to describe at any centrality and
energy. The scaling distribution provides us with not only
a simple picture of the complex pT problem, but also a
way of quantifying the degree of degradation of the
transverse momentum in the dense medium. More im-
portantly, the mere existence of the scaling behavior
presents a phenomenological obstacle to the realization
of the theoretical expectation that deconfinement results
in an anomalous dependence of the pT distribution on
centrality.
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