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Is there Nuclear Pinning of Vortices in Superfluid Pulsars?
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We develop a fully consistent semianalytical model in order to study the vortex-nucleus interaction
in the inner crust of neutron stars. In the framework of the local-density approximation and assuming a
constant pairing gap and a square-well nuclear potential, the model takes into account all energy
contributions and determines unambiguously the structure of the vortex core. The results show that,
irrespective of the value of the pairing gap, only interstitial pinning takes place all along the inner
crust. This is in contrast with all existing calculations, which predict nuclear pinning in the deeper
layers of the crust. Should further studies confirm this surprising result, the explanation of pulsar
glitches in terms of depinning of vortices will have to be carefully revisited.
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stars [5], had to be taken into account. The calculations increase of kinetic energy, due to the vorticous rotation
Rotating neutron stars (pulsars) have been observed to
undergo sudden spin-ups in their rotational frequencies;
these ‘‘glitches’’ may be connected to nucleon superflu-
idity [1]. Indeed, the neutron superfluid permeating the
inner crust cannot follow the pulsar’s rigid rotation, since
superfluid flow must be irrotational. Instead, it develops
an array of microscopic linear vortices, each carrying
angular momentum. A vortex corresponds to a velocity
field ~vv which is singular on the vortex line (axis), but
preserves the condition ~rr� ~vv � 0 everywhere else.
According to the model [1], the vortex lines are pinned
(bound) to the lattice of nuclei present in the inner crust.
Under certain conditions, the vortices can be unpinned
from the lattice and deliver their angular momentum to
the star’s surface, thence spinning it up. To date, all
predictions for pulsar glitches based on the vortex model
rely on a very limited set of results for the crucial pinning
energies [2–4]. These are defined as the difference in
energy between two competing configurations, one with
the vortex line positioned on a nucleus (nuclear pinning),
the other with the vortex line equidistant between two
nuclei (interstitial pinning). The problem is how to cal-
culate the energies of these configurations in a physically
reliable way, and thence determine which kind of pinning
is energetically favored along the inner crust.

Existing studies all agree in predicting nuclear pinning
deep inside the inner crust, for densities larger than
�1013 g=cm3, but they yield quite different values for
the pinning energies in these regions. The first rough
estimates [2] considered only the difference in pairing
condensation energy between the two vortex-nucleus con-
figurations, evaluated in a crude model with uniform
densities for both nuclear and neutron matter. It took
more than ten years [3] to recognize two crucial issues,
namely, that differences in kinetic energy had to be
considered in addition to those in condensation energy
and that the peculiar density profile of the Wigner-Seitz
(WS) cells, determined for the inner crust of neutron
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[3] are based on the Ginzburg-Landau theory to evaluate
the pairing properties of the neutron superfluid. The con-
ditions of applicability of the theory, however, are far
from being satisfied in the inner crust and the authors
must artificially rescale the Ginzburg-Landau results by
large factors, in order to reproduce the pairing properties
of ordinary nuclei. A more satisfying approach was pre-
sented ten years later [4], using the Thomas-Fermi model
based on the local-density approximation (LDA) to de-
scribe the pairing properties of the system. The rationale
behind this choice is that, although unable to describe
correctly the density tail of the system, where the density
goes to zero, the LDA is expected to yield reasonable
results for quantities averaged over the whole system such
as the energies, which are integrated over the WS cell.
These authors [4] also obtained nuclear pinning at large
densities, but with pinning energies about 1 order of
magnitude lower than the ones obtained before, a fact
which tends to improve the agreement between theory and
observations. The difficulty of performing a quantum
calculation for the complicated geometries of the vortex-
nucleus configurations suggests that, in spite of its known
limitations, the LDA approach is to date the most satisfy-
ing one. When applied to the thermal properties of the
inner crust of neutron stars, the LDAyields results that are
qualitatively compatible with those from the complete
quantum calculation, albeit quantitatively different as a
consequence of proximity effects due to the nonlocal
nature of pairing [6].

The work of Ref. [4], however, although indicating a
convenient approach to evaluate the vortex-nucleus inter-
action, eventually failed to develop the model consis-
tently by making some assumptions that we now see as
unjustified and basically incorrect. There are four points
in Ref. [4] we are now critical about. The first is the
definition of the vortex core which, as done in all previous
works, was taken as the superfluid coherence length �,
namely, the distance from the vortex axis where the
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TABLE I. Physical parameters of the four zones in the inner
crust. The values are taken from Ref. [5]. The average baryon
densities, �, are given in g=cm3, the densities of the free
neutron gas, nG, in fm�3, the radii of the nuclei, RN , and those
of the WS cells, RWS, in fm. The total number of neutrons in
each cell and the number of protons and neutrons bound in
nuclei are indicated by N, Z, and Nbound, respectively.

Zone 1 2 3 4

� 1:5� 1012 9:6� 1012 3:4� 1013 7:8� 1013

nG 4:8� 10�4 4:7� 10�3 1:8� 10�2 4:4� 10�2

RN 6 6.7 7.3 6.7
RWS 44 35.5 27 19.4
N 280 1050 1750 1460
Z 40 50 50 40

Nbound 110 110 110 70
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of superfluid neutrons, equals the decrease in condensa-
tion energy, due to the pairing of neutrons in Cooper
pairs. The rationale behind this choice was that inside
this radius it is energetically more convenient for matter
to be in a normal state and at rest in a frame comoving
with the star normal component (e.g., the nuclear lattice),
while outside of � matter is superfluid and moving irrota-
tionally around the vortex axis with the (negative) con-
densational term dominating the kinetic one. Such a
prescription, however, is inconsistent with the Thomas-
Fermi model, which describes the hydrostatic equilib-
rium under degeneracy pressure of a Fermion gas subject
to position-dependent potentials. Indeed, the normal and
superfluid phases should coexist in equilibrium at r � �,
while it is easy to show that in the Thomas-Fermi model
the pressures of the two phases are different at that point,
thus making hydrostatic equilibrium between them im-
possible. A second criticism concerns the structure of the
vortex itself. Indeed, based on the previous energy argu-
ment, the vortex core has always been taken as consisting
of normal matter. However, one should also consider the
possibility that the core is empty of matter, while still
preserving hydrostatic equilibrium. Of the two scenarios,
the system will choose the one with minimum total
energy [7]. The third objection is that in Ref. [4] only
the condensational and kinetic contributions to the energy
were taken into account, neglecting the internal energy
terms. These are density dependent and since the LDA
approach yields different density profiles for the two
pinning configurations, one expects differences also in
the internal energies. The last criticism concerns the
evaluation of the kinetic terms, which was not made in
a consistent way. Indeed, for the nuclear pinning configu-
ration they were calculated directly in the LDA, while for
the interstitial pinning case an analytical expression de-
rived in Ref. [3] was used, which assumes constant den-
sities and is thus at odds with the LDA.

In this Letter we give a satisfying answer to the pre-
vious objections, by developing a fully consistent semi-
analytical schematic model to study the vortex-nucleus
interaction, which describes the presence of vortex lines
in the neutron superfluid that permeates the lattice of
neutron-rich nuclei in the inner crust of neutron stars.
In the framework of the local-density approximation and
assuming a constant pairing gap and a square-well nu-
clear potential, the model takes consistently into account
all energy contributions (condensational, kinetic, and in-
ternal). It also determines unambiguously the radius of
the vortex core which, depending on the density and on
the vortex-nucleus configuration, turns out to be either
small and empty of matter or large and made of normal
matter. The results show that, irrespective of the value of
the pairing gap, only interstitial pinning takes place all
along the inner crust. This is in contrast with all existing
calculations, which predict nuclear pinning in the deeper
regions of the inner crust, the difference arising from
both the structure of the vortex core and the inclusion of
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the internal energy contribution. Should further studies
that also go beyond the present semiclassical treatment of
pairing confirm this surprising result, the explanation of
pulsar glitches in terms of depinning of vortices from the
nuclear lattice will have to be carefully revisited.

We now briefly describe our physical model. The mi-
croscopic structure of the inner crust of neutron stars was
studied in Ref. [5] for different average baryon densities
�, in terms of spherical WS cells of radius RWS containing
N neutrons and a central nucleus of radius RN , with Z
protons and Nbound bound neutrons [8]. The gas of un-
bound neutrons is characterized by a number density nG
(outside of the nucleus) and their number in each cell is
N0

free � N � Nbound. In Table I we report the parameters
associated with four zones along the inner crust. Since we
will consider vortex configurations involving two WS
cells, in our model we will take cubic cells with side
2RWS rather than spherical ones, in order to calculate
consistently the energy differences. The number of un-
bound neutrons must then be renormalized to Nfree �
6N0

free=�.
Since the crust temperature is low compared to the

typical critical temperatures of pairing, we will assume
T � 0. Then, in the framework of the LDA, we define the
neutron local Fermi momentum kf�x� related to the
number density of neutrons n�x� by the usual expression
3�2n�x� � k3f�x�. The Thomas-Fermi method consists of
occupying energy levels up to the Fermi energy � which,
at any given �, is constant throughout the WS cells. We
thus impose the constraint � �

P
i�i�x�, where the sum

is over i � fFermi; nuclear; kinetic; condensationg for the
superfluid phase and i � fFermi; nuclearg for the normal
phase [9]. The nuclear term in our schematic model is that
of a spherical potential box of depth U0 and radius RN;
that is �nuc�x� � �U0 ��r� RN�, with r � jxj the dis-
tance from the center of the nucleus. The Fermi term has
the standard expression �fer�x� � �h2k2f�x�=2mn, with mn
the neutron mass. The kinetic term due to the irrotational
motion around the vortex axis is �kin�x� � �h2=8mnR

2,
with R the distance from the vortex axis. Finally,
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TABLE II. Physical parameters of the four zones in the inner
crust calculated in the semiclassical model with a constant
pairing gap � � 1 MeV. The number of unbound neutrons,
renormalized to a cubic cell of side 2RWS, is indicated by Nfree.
The depth of the nuclear potential, U0, and the chemical
potential, �, are given in MeV. The energy terms for a cubic
WS cell without vortex are reported in MeV.

Zone 1 2 3 4

Nfree 324 1795 3132 2654
U0 48.67 38.68 32.70 28.70
� 1.10 5.74 14.40 24.92
E0;fer 3692.8 9718.2 31755.2 43823.9
E0;nuc �5536:5 �5235:7 �6218:5 �5129:2
E0;con �101:2 �116:2 �80:9 �39:6
E0;tot �2007:9 4366.3 25455.7 38655.2
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the pairing condensation energy is �con�x� � ��2mn=
4 �h2k2f�x�, with � the pairing gap, taken as a constant
input parameter in our model.

The Thomas-Fermi ansatz � �
P
i�i�x� determines

analytically the neutron density n�x� as a function of
position in the cell, for either the normal phase or the
superfluid one, once the Fermi energy � is known. Since,
according to the Feynman-Onsager relation, the mean
spacing between vortex lines is orders of magnitude larger
than RWS for even the fastest pulsars, we can take the
vortices as isolated. The 1=R2 behavior of the kinetic term
guarantees that the effect of the vortex becomes negli-
gible as one moves away from the vortex axis. Therefore,
the vortex is surrounded by regular (without vortex)
superfluid cells, which determine the constant value of
�. In other words, the surrounding cells act as a particle
bath, which exchange neutrons with the vortex region in
such a way as to maintain � fixed.

In Table II we give the results of our model for a vortex-
free [i.e., �kin�x� � 0] cubic WS cell with pairing gap
� � 1 MeV. The parameters U0 and � are determined
TABLE III. Results for the ‘‘pure’’ (P) and the ‘‘mixed’’ (M) pha
nuclear pinning configuration and in the interstitial pinning configu
between the energy with vortex and that without vortex, and they ar
total energy for each zone.

Zone 1 2 3 4
Nuclear pinning

�Efer�P� �188:0 �231:4 �379:7 �481:6
�Efer�M� �5:0 �26:8 �42:4 �18:0
�Enuc�P� 202.5 174.0 171.3 146.2
�Enuc�M� 0.4 0.5 0.5 0.3
�Ekin�P� 100.8 126.8 213.2 272.1
�Ekin�M� 3.1 15.8 22.3 2.5
�Econ�P� 0.7 0.3 0.2 0.1
�Econ�M� 1.7 6.5 17.9 28.5
�Etot�P� 115.9 69.6 4.9 �63:2
�Etot�M� 0.2 �4:1 �1:7 13.3

Phase M M M P
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for each zone in order to give the correct number of bound
and unbound neutrons, which can be obtained by inte-
grating n�x� over the entire cell. Once the nuclear well
depth and the Fermi energy are found, it is possible to
calculate the total energy of the cell E0;tot �

P
iE0;i by

integrating over its volume the total energy density
�tot�x� �

P
i�i�x�. The energy density terms are related

to the previous �i terms by the standard functional de-
rivative �i�x� � ��i�x�=�n�x�. The integrated energies
are also reported in Table II.

We can now describe the vortex-nucleus configurations.
For each zone we consider two cubic WS cells, adjacent
along the x direction, over which we will integrate the
energies. The nuclear pinning configuration has the vor-
tex axis along the z direction and going through the
center of one of the nuclei, the interstitial pinning con-
figuration has the vortex equidistant between the two
nuclei. For each configuration two possibilities arise: first
we can find the surface SM, coaxial with the vortex, where
the pressure of the normal phase is equal to that of the
superfluid one. Matter is normal inside SM and superfluid
outside (the ‘‘mixed’’ phase), with the equality of pres-
sures guaranteeing hydrostatic equilibrium. Alterna-
tively, matter can always be superfluid (the ‘‘pure’’
phase), but with density going smoothly to zero along
some other surface SP coaxial with the vortex. In Table III
we give the energies for these two phases in both configu-
rations when � � 1 MeV; similar results are obtained for
typical values � � 0:5 and 2 MeV. The energies are given
as differences with the values for two vortex-free cells
[10]. The last line gives the phase with minimum total
energy, which will be chosen by the system as energeti-
cally convenient and used in the following calculations.
Finally we evaluate the differences in energy between the
nuclear pinning and the interstitial pinning configura-
tions for each zone. These are reported term by term in
Table IV for three values of the pairing gap.
ses, calculated with a constant pairing gap � � 1 MeV, in the
ration. The energies are reported as differences �Ei � Ei � E0;i
e given in MeV. The last line indicates the phase with minimum

1 2 3 4
Interstitial pinning

�6:0 �60:5 �191:2 �307:9
�5:2 �27:4 �44:1 �18:5

0.5 0.8 1.7 2.5
0.5 0.8 1.7 0.6
3.7 34.8 110.4 177.2
3.4 16.4 23.7 2.8
0.7 0.3 0.2 0.1
1.0 5.8 17.2 28.4

�1:1 �24:6 �79:0 �128:1
�0:3 �4:4 �1:6 13.4
P P P P
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TABLE IV. Energy differences �Ei � E
�np�
i � E�ip�

i between the configuration with nuclear pinning and that with interstitial
pinning, calculated with different constant values of the pairing gap �.

Zone 1 2 3 4 1 2 3 4 1 2 3 4
� � 0:5 MeV � � 1 MeV � � 2 MeV

�Efer 2.5 45.6 �188:5 �173:7 1.0 33.7 148.8 173.7 �1:1 21.0 112.0 �173:5
�Enuc �0:4 �0:7 169.6 143.7 �0:1 �0:3 �1:2 143.7 1.2 1.2 0.4 143.6
�Ekin �1:4 �26:9 102.8 94.9 �0:6 �19:0 �88:1 94.9 �0:4 �11:9 �64:5 94.8
�Econ 0.7 5.8 �0:003 �0:001 1.1 6.2 17.7 �0:005 3.3 8.5 19.5 �0:01
�Etot 1.5 24.2 84.0 64.9 1.3 20.5 77.3 64.9 3.0 18.8 67.5 64.8
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The results presented above suggest several comments.
From Table III we see that the interstitial pinning con-
figuration favors the pure phase all along the crust, while
for the nuclear pinning configuration the type of phase
depends on the density, the mixed one prevailing at lower
densities. This is due to the different competition in the
various phases and configurations between the kinetic and
the internal (i.e., Fermi plus nuclear) terms. A similar
trend is found also for different values of the pairing gap.
Our calculations also show that the vortex cores, here
defined by the surfaces SM and SP, are over an order of
magnitude smaller in the pure phase than in the mixed
one, namely, the vortex cores can be empty of matter and
very thin ( � 1 fm) or made of normal matter and quite
large ( � 10 fm) [11]. Moreover, the dependence of the
core on the local density is opposite in the two phases,
with its radius increasing with � in the mixed phase.
From Table IV we deduce the main result of this paper,
namely, that interstitial pinning takes place at all den-
sities irrespective of the value of the pairing gap. The
values for �Etot get larger as one goes deeper into the
crust. The crucial role of the internal energy contribution
is quite evident, particularly for low densities: without
taking it into account, one would find nuclear pinning in
the outer zones. We also notice that had we considered
only the mixed phases without internal energy, as it was
done in all previous studies, we would have obtained the
familiar result of nuclear pinning at large densities. We
thus see how the inclusion in the model of different
possible phases and of the internal energy terms, justified
before on physical grounds, is fundamental in obtaining
our conclusions.

The results we just described are definitely new and
surprising, since they predict interstitial pinning all along
the inner crust, while all previous studies found nuclear
pinning for � greater than �1013 g=cm3. This could be
crucial for any explanation of pulsar glitches based on
depinning of vortices from the nuclear lattice. Indeed, it
has been shown that interstitial pinning energies are
orders of magnitude weaker than nuclear pinning ener-
gies [12], the former not being directly related to the
energy differences between the two configurations (these,
actually, turn out to be quite large in our model). Before
drawing any conclusion, however, more detailed calcula-
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tions are needed to confirm our findings. Realistic nuclear
potentials and density dependent pairing gaps should be
used, even in the LDA. Of course, the final word will be
given by a complete quantum calculation, which takes
proximity effects into account. The present results, how-
ever, suggest to revisit the explanation of pulsar glitches
in terms of very low pinning energies; whether this will
improve the agreement between theory and observations,
or rather make it impossible, is a fully open issue.
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