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Universal Behavior of Crossover Scaling Functions for Continuous Phase Transitions
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We consider two different systems exhibiting a continuous phase transition into an absorbing state.
Both models belong to the same universality class; i.e., they are characterized by the same scaling
functions and the same critical exponents. Varying the range of interactions, we examine the crossover
from the mean-field-like to the non-mean-field scaling behavior. A phenomenological scaling form is
applied in order to describe the full crossover region, which spans several decades. Our results strongly
support the hypothesis that the crossover function is universal.
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[4,5,9,10]. Using a sophisticated cluster algorithm for
long-range interactions, it was possible to cover the full

both particles of a given active site to randomly chosen
empty or single occupied nearest neighbor sites.
The critical behavior of a system exhibiting a second
order phase transition with non-mean-like scaling behav-
ior is strongly affected by the range of interactions. The
longer the range of interactions, the stronger will be the
critical fluctuations reduced. In the limit of infinite inter-
actions, the system is characterized by the mean-field
scaling behavior. But according to the well-known
Ginzburg criterion [1], mean-field-like behavior occurs
even for finite interaction ranges sufficiently far away
from the critical point. A crossover to the non-mean-field
scaling behavior takes place if one approaches the tran-
sition point. Although crossover phenomena are well
understand in terms of competing fix points of the corre-
sponding renormalization group approaches (see, for in-
stance, [2]), some aspects of crossover phenomena are
still open. For instance, it is an open question whether the
so-called effective exponents fulfill certain scaling rela-
tions over the entire crossover region (see [3–6], and
references therein). A second open question is the main
theme of this Letter and addresses the universality of the
crossover scaling functions. The range where the univer-
sal critical scaling behavior applies is usually restricted to
a small vicinity around the critical point. Therefore, it is
questioned that the full crossover region, which spans
several decades in temperature or conjugated field, can
be described in terms of universal scaling functions.
Renormalization group approaches predicted a nonuni-
versal behavior if one uses finite cutoff lengths, whereas
infinite cutoff lengths (which correspond to an unphys-
ical vanishing molecular size) lead to a universal cross-
over behavior (see, for instance, [7,8]). On the other hand,
the experimental situation is also unclear since measure-
ments over the whole crossover region are difficult and
accurate results are rare (see [4] for a short discussion).
Thus, several attempts were performed in order to address
this question via numerical simulations. For instance, the
two- and three-dimensional Ising model with various
interaction ranges is considered in a series of papers
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crossover region. In particular, a collapse of the suscep-
tibility for different values of the interaction range was
observed. Thus, the crossover can be described by a single
scaling function in agreement with renormalization
group approaches. But this result does not present evi-
dence that this scaling function is universal, since only
one system of a given universality class was considered.

The purpose of this Letter is to demonstrate via
numerical simulations that the crossover from non-
mean-field to mean-field-like scaling behavior can be
represented by universal functions. We therefore consider
two different systems exhibiting a continuous phase tran-
sition; both belong to the same universality class. The
dynamics of the models is characterized by simple par-
ticle hopping processes, i.e., various interaction ranges
can be easily implemented and highly accurate data are
available. In this way it is possible to observe the full
crossover region. Notice that we focus in our investiga-
tions on the particular universality class of absorbing
phase transitions only for technical reasons. The demon-
strated universality of crossover scaling functions can be
applied to continuous phase transitions in general.

The first considered model is the so-called conserved
lattice gas (CLG) which was introduced in [11]. In the
CLG lattice sites may be empty or occupied by one
particle. In order to mimic a repulsive interaction, a given
particle is considered as active if at least one of its
neighboring sites on the lattice is occupied by another
particle. If all neighboring sites are empty, the particle
remains inactive. Active particles are moved in the next
update step to one of their empty nearest neighbor sites,
selected at random.

The second model is the so-called conserved transfer
threshold process (CTTP) [11]. Here lattice sites may be
empty, occupied by one particle, or occupied by two
particles. Empty and single occupied sites are considered
as inactive, whereas double occupied lattice sites are
considered as active. In the latter case, one tries to transfer
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FIG. 1. The order parameter of the CTTP for various values
of the interaction range R. With increasing interaction range,
the critical density tends to the mean-field value �c;R!1 � 1=2.
The inset displays the order parameter which is rescaled
according to Eq. (18). The dotted line corresponds to the
scaling laws y � mx with m � �a�;R�1=�c;R�1�

�D�2 .
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In our simulations (see [12,13] for details), we have
used square lattices of linear size L � 2048. Every simu-
lation starts from a random distribution of particles.
After a transient regime both models reach a steady state
characterized by the density of active sites �a. The den-
sity �a is the order parameter, and the particle density � is
the control parameter of the absorbing phase transition;
i.e., the order parameter vanishes at the critical density �c

according to �a / ���, with the reduced control parame-
ter �� � �=�c � 1. In additional to the order parameter,
we consider its fluctuations ��a. Approaching the tran-
sition point from above (�� > 0), the fluctuations diverge
according to (see [12,13]) ��a / ����0

. Below the criti-
cal density (in the absorbing phase), the order parameter
as well as its fluctuations are zero in the steady state.

It was shown recently that the order parameter as well
as its fluctuations obey the scaling forms [14]

�a���; h� � 
�� ~RR�a���
; ahh
�; (1)

a���a���; h� � 
�0 ~DD�a���
; ahh
�; (2)

where h denotes an external field which is conjugated to
the order parameter [12]. The universal scaling functions
~RR�x; y� and ~DD�x; y� are the same for all systems belonging
to a given universality class, whereas all nonuniversal
system-dependent features (e.g., the lattice structure, the
update scheme, etc.) are contained in the so-called non-
universal metric factors a�, ah, and a� [15]. The universal
scaling functions are normed by the conditions ~RR�1; 0� �
~RR�0; 1� � ~DD�0; 1� � 1 and the nonuniversal metric factors
can be determined from the amplitudes of

�a���; h � 0� � �a�����; (3)

�a��� � 0; h� � �ahh��=; (4)

a���a��� � 0; h� � �ahh�
��0=: (5)

These equations are obtained by choosing in the scaling
forms [Eqs. (1) and (2)] a���
 � 1 and ahh
 � 1,
respectively.

Usually scaling functions are known only above the
upper critical dimension Dc where the mean-field theory
applies. In the case of the CLG model and CTTP, the
mean-field scaling functions are given by [14,16]
~RRMF�x; y� � x=2	 
y	 �x=2�2�1=2 as well as ~DDMF�x; y� �
~RRMF�x; y�=
y	 �x=2�2�1=2, i.e., the mean-field exponents
are �MF � 1, MF � 2, and �0

MF � 0 (corresponding to a
finite jump of the fluctuations). Below the upper critical
dimension the universal scaling functions depend on the
dimension and are unknown due to a lack of analytical
solutions.

In the original CLG model and the original CTTP,
particles of active sites are moved to nearest neighbors
only; i.e., the range of interactions is R � 1. In the follow-
ing, we consider a modified CLG model and a modified
CTTP where particles of active sites are moved (accord-
210601-2
ing to the rules of each model) to randomly selected sites
within a radius R. The order parameter is plotted in Fig. 1
for various ranges of interactions (R 2 f1; 2; 4; . . . ; 128g).
In the following, we examine how the varying interaction
range affects the scaling behavior in the vicinity of the
absorbing phase transition which now takes place at the
critical density �c;R.

The crossover scaling function at zero field has to
incorporate the range of interactions as an additional
scaling field. We make the phenomenological ansatz

�a��; Reff� � 
��MF ~RR
a���� �c;R�
;a
�1
R R�1

eff

��; (6)

where the scaling function ~RR is universal since we allow
for the nonuniversal metric factors a� and aR. The
Ginzburg criterion states that the mean-field picture is
self-consistent in the active phase as long as the fluctua-
tions within a correlation volume are small compared to
the order parameter itself (see [17]). Thus, the crossover
exponent is given by � � �2�MF � �MFD�=D �
�4�D�=2D, where �MF � 1=2 denotes the critical expo-
nents of the spatial correlation length. In order to avoid
lattice effects, we use the effective interaction range [9]

R2
eff �

1

z

X
i�j

jri � rjj
2; jri � rjj � R; (7)

where z denotes the number of lattice sites within a radius
R (see Table I). The mean-field scaling behavior should be
recovered for R ! 1, thus

~RR�x; 0� � ~RRMF�x; 0� � x�MF ; (8)

which implies a� � a�;R!1=�c;R!1. These factors were
already determined in previous works where absorbing
phase transitions with infinite particle hopping were
210601-2
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FIG. 2. The rescaled order parameter. The metric factors are
given by c � a�a2

R and d � a2
R. The data of both models

display an excellent collapse to the universal crossover scaling
function ~RR�x; 1�. The dashed lines correspond to the asymp-
totic behavior of the two-dimensional system (�D�2 � 0:639
[13]) and of the mean-field behavior (�MF � 1). Neglecting the
metric factors, each model is characterized by its own scaling
function (see lower right inset). The upper left inset displays the
effective exponents �eff for both considered models. The data
of the CLG model and of the CTTP exhibit an excellent data
collapse.

TABLE II. The nonuniversal metric factors determined from
previous simulations via direct measurements of the corre-
sponding power laws.

�c;R�1 a�;R�1 a�;R�1 �c;R!1 a�;R!1 a�;R!1

CLGD�2 0.344 94 0.5089 15.50 0.1244 0.1635 12.02
CTTPD�2 0.693 92 0.3410 50.18 1=2 0.3345 24.85

TABLE I. The range of interactions R, the corresponding
number of next neighbors z on a square lattice, and the effective
range of interactions Reff for which we have carried out
simulations. Additionally, the values of the critical densities
are listed.

R zD�2 R2
eff;D�2 �CLG

c;R �CTTP
c;R

1 4 1 0.344 94(3) 0.693 92(1)
2 12 7

3 0.224 32(4) 0.636 49(2)
4 48 8 0.168 02(7) 0.550 05(3)
8 196 1546

49 0.140 50(9) 0.516 88(4)
16 796 25 274

199 0.129 77(10) 0.505 52(6)
32 3208 204 875

401 0.125 98(11) 0.50161(7)
64 12 852 13 146 247

6426 0.124 99(16) 0.500 46(8)
128 51 432 105 255 421

12858 0.124 65(19) 0.50019(9)
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investigated [16]. The nonuniversal metric factor aR has to
be determined by a second condition. Several ways are
possible [e.g., ~RR�0; 1� � 1] but for the sake of conve-
nience we force ~RR to scale as

~RR�x; 1� � x�D; for x ! 0; (9)

where �D denotes the non-mean-field order parameter
exponent of the corresponding D-dimensional system.
Setting a�1

R R�1
eff


� � 1 in Eq. (6) yields for zero field

�a��; Reff� � �aRReff�
��MF=� ~RR
a���� �c;R�a

1=�
R R1=�

eff ; 1�:

(10)

Taking into account that the D-dimensional scaling be-
havior is recovered for R � 1, we find

a R �

�
�c;R�1

a�;R�1

a�;R!1

�c;R!1

�
��D=��MF��D�

: (11)

According to the above scaling form, we plot in Fig. 2
the rescaled order parameter �a�aRReff�

2 as a function of
the rescaled control parameter a���� �c;R��aRReff�

2 for
the two-dimensional (� � 1=2) CLG model and the two-
dimensional CTTP. The values of the metric factors are
listed in Table II and are determined from data of pre-
vious simulations (via a direct measurement of the am-
plitudes of the corresponding power laws). Thus, no
parameter fitting is applied. We observe an excellent
data collapse for the entire range of the crossover, con-
firming the phenomenological ansatz. In the inset in Fig. 2
we plot the same data without metric factors. As can be
seen, each model is characterized by its own scaling
function.

Since the entire crossover region covered several dec-
ades, it could be difficult to observe small but systematic
differences between the scaling functions of both models.
It is therefore instructive to examine the crossover via the
so-called effective exponent [5]

�eff �
@

@ lnx
ln ~RR�x; 1�: (12)
210601-3
The corresponding data are shown in Fig. 2. The excellent
data collapse of �eff of both models over more than seven
decades strongly supports the hypothesis that the cross-
over function is a universal function.

We now consider the order parameter fluctuations.
Analogous to the order parameter, we make the scaling
ansatz (�0

MF � 0)

a ���a��; Reff� �
~DD
a���� �c;R�
;a�1

R R�1
eff


��: (13)

Again, the mean-field behavior should be recovered for
R ! 1, implying ~DD�x; 0� � ~DDMF�x; 0� � 2 as well as
a� � a�;R!1. Setting a�1

R R�1
eff


� � 1 yields

a ���a��; Reff� �
~DD
a���� �c;R�a

1=�
R R1=�

eff ; 1�: (14)

For finite R, the fluctuations diverge at the critical point;
i.e., the universal function ~DD scales as

~DD�x; 1� �m�;�x��0
D; for x ! 0: (15)

The universal amplitude m�;� can be determined in the
210601-3
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FIG. 3. The rescaled fluctuations of the order parameter.
The metric factor is given by c � a�a2

R. The data of both
models display a good collapse to the universal crossover
scaling function ~DD�x; 1�. The dashed lines correspond to the
asymptotic behavior of the two-dimensional system (�0

D�2 �
0:381 [13] and m�;� � 1:28) and of the mean-field behavior
(�0

MF � 0). The inset displays the corresponding effective ex-
ponent �0

eff .
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following way: The scaling form Eq. (13) has to equal for
R � 1 the D-dimensional scaling behavior [see Eq. (2)]

��a � a�1
�;R�1

~DD�1; 0�
�
a�;R�1

��� �c;R�1�

�c;R�1

�
��0

D
: (16)

Thus, we find

m�;� � ~DD�1; 0�
a�;R!1

a�;R�1

�
�c;R�1

a�;R�1

a�;R!1

�c;R!1

�
�0
D�MF=�MF��D

;

(17)

where the value of the universal scaling function
~DD�1; 0� � 1:87� 0:11 is obtained via direct measure-
ments of the corresponding two-dimensional systems.
According to the scaling form Eq. (14), we plot in Fig. 3
the rescaled fluctuations as a function of the rescaled
control parameter for the two-dimensional CLG model
as well as for the CTTP.We observe again a good collapse
of the data over the entire region of the crossover.
Furthermore, both asymptotic behaviors are recovered,
confirming the scaling ansatz Eq. (13).

The corresponding effective exponent �0
eff �

@ ln ~DD�x; 1�=@ lnx is displayed in the inset in Fig. 3.
Although the data of the effective exponent are suffering
from statistical fluctuations, one can see that both models
are characterized by the same universal behavior.

At the end, we consider the critical amplitudes of the
scaling functions. Using the above discussed scaling
forms, it easy to show that these amplitudes display a
singular dependence on the range of interactions. For
210601-4
instance, the order parameter scales sufficiently close to
the transition point (x ! 0) as [see Eqs. (9)–(11)]

�a��; Reff� � R��D��MF�=�
eff

�
a�;R�1

�� �c;R

�c;R�1

�
�D

: (18)

Thus, this scaling law and the corresponding scaling law
for the fluctuations are valid only for finite interaction
ranges, whereas they become useless for infinite R, signal-
ing the change in the universality class for R ! 1. This
amplitude scaling can be observed in simulations. The
inset in Fig. 1 shows the corresponding data for the
CTTP. As can be seen, the data of various interaction
ranges tend to the same power-law behavior if one ap-
proaches the transition point.

In conclusion, the crossover from mean-field to non-
mean-field scaling behavior is numerically investigated
for two different models exhibiting an absorbing phase
transition. Increasing the range of interactions, we are
able to cover the full crossover region which spans several
decades of the control parameter. The excellent collapse
of the effective exponents of both models strongly sup-
ports the interpretation of the crossover scaling functions
in terms of universality; i.e., the crossover function is
universal.
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[4] E. Luijten, H.W. J. Blöte, and K. Binder, Phys. Rev. Lett.

79, 561 (1997).
[5] E. Luijten and K. Binder, Phys. Rev. E 58, R4060 (1998).
[6] M. I. Marqués and J. A. Gonzalo, Eur. Phys. J. B 14, 317

(2000).
[7] M. A. Anisimov, S. B. Kiselev, J.V. Sengers, and S. Tang,

Physica (Amsterdam) 188A, 487 (1992).
[8] M.Y. Belyakov and S. B. Kiselev, Physica (Amsterdam)

190A, 75 (1992).
[9] K. K. Mon and K. Binder, Phys. Rev. E 48, 2498 (1993).
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