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Microscopic Structure of a Vortex Line in a Dilute Superfluid Fermi Gas
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The microscopic properties of a single vortex in a dilute superfluid Fermi gas at zero temperature are
examined within the framework of self-consistent Bogoliubov–de Gennes theory. Using only physical
parameters as input, we study the pair potential, the density, the energy, and the current distribution.
Comparison of the numerical results with analytical expressions clearly indicates that the energy of the
vortex is governed by the zero-temperature BCS coherence length.
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based on microscopic theory. ture of the vortex core is determined by the lowest lying
The trapping and cooling of dilute Fermi gases is an
increasingly active area of research within the field of
ultracold atomic gases. Several experimental groups now
trap and cool alkali atoms with Fermi statistics reaching
temperatures as low as �0:2TF, with TF being the Fermi
temperature of the system [1]. These gases are appealing
to study due to the large experimental control of their
properties and the microscopically well-understood two-
body effective interaction between the atoms. One of the
main goals of the present experimental effort is to ob-
serve a phase transition to a superfluid state predicted to
occur below a certain critical temperature Tc [2]. A
fascinating prospect of such a superfluid is the formation
of quantized vortices. The combination of theoretical and
experimental studies of vortices in Bose-Einstein con-
densates (BECs) has produced a number of beautiful
results in recent years [3]. For fermions, the nature of
vortices in different systems such as type-II superconduc-
tors, superfluid 3He, and neutron stars is a classic problem
with a vast literature [4–6].

One problem of fundamental importance is to calculate
the energy of a vortex for T � 0. This energy is defined as
the difference between the energy of the superfluid state
with the vortex present and without. Dividing this value
by the angular momentum per particle in the vortex state
gives the frequency at which the vortex becomes the
thermodynamic ground state of a rotating system. It is
rather surprising that, despite the large amount of work
concerned with the structure of a vortex for a fermionic
system, there is no clear result regarding this specific
problem. This is in contrast with the case of a dilute
bosonic superfluid, where the Gross-Pitaevskii equation
allows an analytical calculation of the vortex energy for
T � 0 if quantum fluctuations are neglected [7]. The
equivalent theory relevant for fermions, Ginzburg-
Landau theory, is unfortunately valid only for jT �
Tcj=Tc � 1, making an analytical calculation of the en-
ergy for T � 0 more complicated. In this Letter, we
present the first ab initio calculation of the vortex energy
0031-9007=03=90(21)=210402(4)$20.00
We consider in the following a two-component gas of
neutral fermionic atoms with mass m in a cylinder of
radius R. We take the number of particles in each spin
state N	 to be the same, as this is the optimum situation
for superfluidity [2]. In the dilute limit, the interaction
between the atoms in the two spin states 	 �"; # can be
well described by the contact potential g��r	, where g �
4 �h2a=m and a < 0 is the s-wave scattering length de-
scribing low energy collisions between " atoms and #
atoms. In the zero-temperature limit that we are treating
here, there are no intracomponent collisions [8]. Recently,
two papers have calculated the T � 0 vortex energy for a
Fermi superfluid under these assumptions. Using phe-
nomenological models, the energy of a unit circulation
vortex was estimated in Ref. [9] to be

E v ’
 �h2n	

2m
ln

�
D

R
�BCS

�
; (1)

where n	 � ~kk3F=6
2 is the density in each of the two

components, and �BCS � �h2 ~kkF=m�0 is the BCS coher-
ence length with �0 the bulk value of the superfluid gap;
BCS theory predicts �0 � 8e�2 ~�� exp��=2~kkFjaj	 [10].
The effective Fermi momentum, ~kkF, is defined as
�h2 ~kk2F=2m � �� gn	 � ~��, where � is the chemical po-
tential, such that it includes the effect of the Hartree mean
field. It was argued in Ref. [9] that a microscopic calcu-
lation for T � 0 would yield D to be a constant �O�1	
independent of ~kkF and jaj since the characteristic length
scale of a vortex must be expected to be O��BCS	. The
value of D depends on the phenomenological model used:
If the vortex is modeled as a cylinder of radius �BCS

containing a normal stationary fluid, surrounded by a
rotating superfluid, one obtains D � 1:36. We refer to
this simple model as the cylinder model. If Ginzburg-
Landau theory is applied, we get D � 1:65.

This conclusion was, however, disputed in the work of
Ref. [11]. Here it was argued that the characteristic length
scale of the vortex is much smaller than �BCS and the
energy correspondingly higher. This is because the struc-
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FIG. 1. The energy density of the superfluid gas. Note that on
this scale the energies of the system with and without a vortex
are indistinguishable, as the energy cost associated with vortex
formation is much smaller than the total energy.
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vortex states. These states are formed out of excitations
around the Fermi level with typical wavelengths �~kk�1

F ,
and following the conclusions based on the analytical and
numerical solutions of the Bogoliubov–de Gennes (BdG)
equations [12,13] it was argued that the important length
scale of the core region is �1 � 4=~kk2Fjaj � �BCS in the
dilute regime [11]. Using �1 as the size of the vortex core,
a calculation identical to the one given in Ref. [9] leads to
a vortex energy given by Eq. (1) but with D ’ �BCS=�1 �
1 in the dilute regime. Thus, the energy was predicted to
be significantly higher than what was estimated in
Ref. [9]. Note that D is now not a constant but depends
on ~kkF and jaj.

It is presently not clear which of the two quite different
predictions is correct and, thus, what the energy of the
vortex actually is. In order to settle this question, we now
present a microscopic calculation of the vortex energy
using the assumptions given above. The BdG equations
describing the superfluid state read [4]�

H0�r	 ��r	
��r	 �H0�r	

��
u��r	
v��r	

�
� E�

�
u��r	
v��r	

�
; (2)

with H0�r	 � � �h2r2=2m���U�r	, and where U�r	 �
gn	�r	 � g

P
�jv��r	j2 is the Hartree field and ��r	 �

�~gg
P

� u��r	v
��r	 is the gap function. To avoid having

to introduce an arbitrary high energy cutoff in the theory,
we have used a zero range pseudopotential scheme giving
rise to a regularized coupling constant ~gg, when calculat-
ing ��r	 [14]. The result is a well-defined theory using
only physical parameters as input. Further details of this
and the numerical techniques used to solve these equa-
tions will be given elsewhere. Once the self-consistent
solution is obtained for a given coupling strength and
chemical potential, the energy is given by E �
hĤH ��N̂Ni, where ĤH is the Hamiltonian of the system
[4], and N̂N is the number operator. Defining E�r	 �
2
P

�jv��r	j2E�, E can be calculated using

E � �
Z

d3r
�
E�r	 �

1

~gg
�jU�r	j2 � j��r	j2�

�
: (3)

We now solve the BdG equations for the gas in a
cylinder of height Lz and radius R � �BCS. Since �BCS

is a decreasing function of ~kkFjaj, we use two different
cylinder sizes. For ~kkFjaj � 0:43 (~kkFjaj � 0:43), we take
R � 44:1 �m (R � 12:6 �m) and Lz � 12:5 �m (Lz �
5 �m). We find the lowest-energy superfluid state of the
system by setting ��r	 � ��!; z	, where ! is the perpen-
dicular distance from the axis of symmetry of the cylin-
der, and z is the axial coordinate. For a vortex state, we
assume the form ��r	 � exp��i#	��!; z	, where # is the
azimuthal angle around the cylinder axis. This corre-
sponds to a vortex line with unit circulation along the
cylinder axis. In both cases U�r	 � U�!; z	. In the vortex-
free case, the cylindrical symmetry dictates that Cooper
pairs form between particles with angular momentum �h$
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and � �h$ along the cylinder axis, whereas in the vortex
case pair constituents have angular momentum �h$ and
� �h�$� 1	 [4]. Once the two solutions with and without
the vortex are obtained, the energy per unit length of the
vortex line can be determined as Ev � �Ev � E0	=Lz,
where Ev denotes the energy of the vortex state and E0

the energy of the state without a vortex, both obtained
from Eq. (3). Throughout the succeeding analysis we
consider a gas of 6Li atoms with a � �955a0. The den-
sity in each hyperfine state is chosen to be a few times
1013 cm�3. These parameters are appropriate for ongoing
experiments [15]. The numerical solution of the BdG
equations is obtained within a Bessel function discrete
variable representation in ! [16,17], and periodic bound-
ary conditions along the vortex axis.

In Fig. 1, we plot the total energy density E=V of the
superfluid gas, where V is the volume of the cylinder, and
E is given by Eq. (3), as a function of the effective
interaction strength ~kkFjaj. The � and � are obtained
from a self-consistent numerical solution of the BdG
equations for two different values of R, whereas the line
is the ground state energy per unit volume of a bulk Fermi
superfluid,

Ebulk

V
�

6

5
n	

�h2 ~kk2F
2m

��2n	 � gn2
	 �

N�0	�2
0

2
: (4)

Here N�0	 � m~kkF=22 �h2 is the density of states at the
Fermi level. This expression is obtained by integrating
analytically Eq. (3) for a homogeneous gas where the u�r	
and v�r	 are simple plane wave states. The first three
terms in Eq. (4) give to the energy of a homogeneous
gas in the normal phase within the Hartree-Fock approxi-
mation and the last term is the condensation energy. We
see that there is good agreement between our numerical
results and the analytical formula. The slight discrepancy
is due to boundary effects at the edge of the cylinder,
210402-2
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where the density of particles vanishes. Note that we are
at the limit of the weak coupling regime ~kkFjaj � 1,
appropriate for dilute gases. For purposes of comparison
with analytical results, however, it is important to calcu-
late properties for the widest possible range of �BCS,
subject to the condition �BCS � R which ensures that
the gap function can heal to its bulk value before becom-
ing suppressed at the cylinder surface.

In Fig. 2, we plot the numerically calculated energy of
the vortex Ev for varying ~kkFjaj. To compare with the
analytical predictions, we parametrize Ev by the variable
D appearing in Eq. (1). The dashed line corresponds to
the prediction D � 1:36 [9] and the solid line to D �
�BCS=�1 [11]. We see that the two predictions for D have a
completely different dependence on ~kkFjaj. The important
conclusion is that the numerical results confirm D�O�1	
being a constant independent of ~kkFjaj in agreement with
Ref. [9]. On the other hand, the prediction D � �BCS=�1

yields a qualitatively incorrect result. We note that the
kink in Ev is due to R=�BCS being different for the two
cylinder sizes, whereas the spread in D at ~kkFjaj � 0:43 is
indicative of our numerical accuracy. The numerical value
D ’ 2:5 is higher than the prediction of phenomenologi-
cal models in Ref. [9]. This is as expected since these
models can yield only the correct order of magnitude of
the constant inside the logarithm. Thus, the length scale
determining the energy of the vortex is ��BCS and not �1.

To examine this in more detail, we plot in Fig. 3 the
numerically calculated profile of a vortex for two repre-
sentative values of ~kkFjaj. Close to the vortex core, only
the lowest-energy (bound) states contribute to the order
parameter; these give rise to the observed Friedel
oscillations, which have a wavelength on the order of
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FIG. 2. The energy of the vortex in terms of the parameter D.
The dashed and solid lines correspond to the analytical pre-
dictions of Refs. [9,11], respectively, and the numerical results
are indicated with � (R � 12:6 �m) and � (R � 44:1 �m)
with the average �DD represented by the dotted line. The inset
depicts Ev with lines giving the analytical prediction of Eq. (1)
using D � �DD.
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~kk�1
F . We see that the length scale defined as �1 �
lim!!0���!; z	=!�1�

�1 giving the slope of ��r	 at the
vortex core actually is much smaller than �BCS as pre-
dicted in Refs. [11,12]. Here, �1 is the value of j��r	j far
away from the vortex core with �1 ’ �0 as expected.
However, as the distance ! from the vortex core increases,
the slope decreases and ��r	 reaches the value �1 on a
length scale ��BCS and not �1. To quantify this, we use
the cylinder model of the vortex with a vortex radius
�2 � x�BCS to calculate Ev. This yields Eq. (1) but now
with D � �1:36	x

2
=x. The equation D � 2:5 then gives

x � 0:42. Thus, �2 � 0:42�BCS is the length scale deter-
mining the energy of the vortex. Again, it should be
emphasized that x ’ 0:42 is a constant over the large
range of �BCS used in the calculations thereby verifying
that indeed �BCS determines the length scale relevant for
the energy as discussed in [9]. The cylinder model of ��!	
with the correct radius �2 � 0:42�BCS is plotted in Fig. 3.

To examine the superfluid flow associated with the
vortex giving rise to the angular momentum, we plot
the current density js�!	 given by

j s�!	 �
2 �h
mi

X
�

v
��r	!�1@#v��r	e# (5)

in Fig. 4 for ~kkFjaj � 0:59. Because the normal component
carries no current by construction, the total current den-
sity may be written as js�!	 � 2nsvs with the superfluid
velocity vs � e# �h=2m! and the superfluid (or atom-pair)
density ns. We plot ns�!	 defined in this way in Fig. 4.
Note that, unlike dilute interacting Bose gases at zero
temperature, the superfluid density in a dilute Fermi
superfluid does not have the same behavior as the order
parameter ��r	. As expected, ns�!	 ’ n	 far away from
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FIG. 3. The vortex profile ��!	=�1 for two values of ~kkFjaj.
The thick solid line corresponds to 25 000 atoms per hyperfine
state and a transition temperature of 0:045 �K, while the thick
dashed curve is for N	 � 66 500 giving Tc � 0:23 �K. For
both curves R � 12:6 �m. The thin solid and dashed lines
depict the cylinder model of the vortex with radius �2 �
0:42�BCS for the two ~kkFjaj values. The inset shows the full
~kkFjaj � 0:43 solution.
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the vortex core and ns�!	 ! 0 for ! ! 0. The dotted
line in Fig. 4 gives the analytical result j#�!	 �
�h~kk3F=�6

2m!	, which agrees well with the numerics
away from the vortex core. As a self-consistency check
on the numerics, the angular momentum per particle
along z is found to be exactly �h=2, corresponding to one
unit of angular momentum �h per Cooper pair as expected.

As shown in Fig. 4, the presence of a vortex in a Fermi
system does not lead to any significant change in the
particle density n	�!	 [4], in contrast with a dilute Bose
gas, where the density is minuscule on the vortex line
[18]. Direct observation of the vortex core (now common-
place for BECs) is therefore not likely. The quantized
currents, and therefore the presence of superfluidity, can
be readily detected using at least three approaches, how-
ever. One of these is the collective mode spectrum. When
no vortex is present, excitations carrying equal and op-
posite angular momentum along the z axis are degenerate
in energy. The vortex currents lift this degeneracy since
the rotational symmetry is removed. The resultant split-
ting of the surface modes is proportional to the angular
momentum of the gas [9,19]. This technique has been
used to infer the presence of a vortex in a trapped BEC
[20]. A second approach was demonstrated in a recent
experiment where the precession rate of the scissors os-
cillation mode was used to measure the quantized angular
momentum per particle with great accuracy [21]. A third
method is spatially selective Bragg scattering; the super-
fluid currents modify the Bragg momentum conservation
conditions, giving rise to a strongly anisotropic out-
coupled atomic beam [22].

In conclusion, we have accurately determined the en-
ergy of an isolated vortex line in a dilute superfluid Fermi
210402-4
gas at zero temperature. The results clearly indicate that
the BCS coherence length sets the scale for the vortex
energy and therefore the critical frequency for vortex
stability.
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