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We have investigated the physical effects of the Dzyaloshinskii-Moriya (DM) interaction in copper
benzoate. In the low-field limit, the spin gap is found to vary as H2=3ln1=6�J=�BHs� (Hs: an effective
staggered field induced by the external field H) in agreement with the prediction of conformal field
theory, while the staggered magnetization varies as H1=3 and the ln1=3�J=�BHs� correction predicted by
conformal field theory is not confirmed. The linear scaling relation between the momentum shift and
the magnetization is broken. We have determined the coupling constant of the DM interaction and have
given a complete quantitative account for the field dependence of the spin gaps along all three principal
axes, without resorting to additional interactions such as interchain coupling. A crossover to strong
applied field behavior is predicted for further experimental verification.
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field, copper benzoate can be modeled by the follow- component is a good quantum number, the calculation
Recently some novel magnetic properties were discov-
ered in a variety of quasi-one-dimensional materials,
such as copper benzoate Cu�C6D5COO�23D2O [1,2],
Yb4As3 [3–5], and BaCu2Si2O7 [6]. In these materials,
the Dzyaloshinskii-Moriya (DM) interaction [7–9] plays
an important role, especially in an applied magnetic field.
This has stimulated extensive investigation on the physi-
cal properties of the DM interaction. However, this inter-
action is rather difficult to handle analytically, which has
brought much uncertainty in the interpretation of experi-
mental data and has limited our understanding of many
interesting quantum phenomena of low-dimensional
magnetic materials.

For copper benzoate, Dender et al. [1,2] found that the
spin excitation gap shows a peculiar field dependence,
��H0:65, in low fields. On the contrary, excitations re-
main gapless in the S � 1=2 Heisenberg model below a
critical field. Oshikawa and Affleck (OA) suggested that
this field dependence of the gap is due to a staggered mag-
netic field induced by the DM interaction in addition to
the staggered g factor in a uniform field [9,10]. However, a
satisfactory explanation for the field dependence of the
energy gaps in all three directions is still lacking [11,12].
It was argued that the inconsistency between the experi-
mental data and theoretical results might be due to the
neglect of the interchain coupling and/or anisotropic
interaction terms in the low-field effective model used
by Oshikawa and Affleck [9,11]. We believe this issue can
be clarified by a thorough study of the DM interaction and
a direct comparison with experiments.

Copper benzoate is a quasi-1D spin-1=2 antiferromag-
netic Heisenberg system. The chain direction is the c axis.
It contains two types of alternating and slightly tilted
CuO8 octahedra. This leads to two inequivalent Cu��

ions and an alternating DM coupling [13]. In an applied
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ing Hamiltonian:

ĤH �
X
i

� JŜSi � ŜSi�1 � ���iD � ŜSi � ŜSi�1

��BH � 	gu � ���igs
 � ŜSi�; (1)

where the three terms in the summation are the antifer-
romagnetic Heisenberg, DM, and Zeeman splitting inter-
actions, respectively. The exchange coupling constant J,
determined from the neutron scattering measurements, is
about 1.57 meV. The DM interaction is much weaker than
the Heisenberg term. The D vector, primarily aligned
along the a00 axis, will be determined numerically. gu

and gs are the uniform and staggered components of the
alternating g tensor as given in Ref. [13] for copper
benzoate.

The DM term can in principle be eliminated by per-
forming a spin rotation about the D vector by an angle
� � � 1

2 tan
�1�D=J� on the alternating sites. This results

in a small exchange anisotropy and an effective staggered
magnetic field in addition to the gs term in (1). The total
effective staggered field is approximately given by

H s 


�
gs �

1

2J
D� gu

�
�H (2)

up to the leading order in D=J. In Ref. [9], OA studied the
isotropic Heisenberg model with a staggered field after
eliminating the DM term and neglecting all anisotropic
terms. They estimated that the DM coupling constant is
about D � �0:13; 0:0; 0:02�J from the specific heat, neu-
tron scattering, and ESR measurement data [1,9].

In order to explore the low-energy properties of copper
benzoate, we use density matrix renormalization group
(DMRG) [14,15] to study directly the Hamiltonian de-
fined by Eq. (1). Since neither the total spin nor its z
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is computer time-consuming. Open boundary conditions
are used and up to 400 states are retained in our calcu-
lation. The convergence of the results is systematically
examined and the truncation error is less than 10�7. To
obtain the values of gaps and magnetizations in the ther-
modynamic limit, an extrapolation from the DMRG cal-
culations up to 1000 sites is done.

Figure 1 shows the spin excitation gap as a function of
inverse lattice size L in different applied fields H. In zero
field, there is no gap in the excitation spectrum in the
thermodynamic limit and the gap decreases monotoni-
cally with L increasing. However, in finite fields, the size
dependence of the gap becomes more complicated and
changes dramatically with H increasing. The oscillations
of the gaps are due to the competition between the uni-
form and staggered magnetic fields. The most pronounced
oscillation occurs when the contributions to the Zeeman
energy from these two fields become comparable, and the
characteristic length scale of the oscillation is inversely
proportional to the energy gap. Since the gap along the a00

axis is much smaller than other directions, the oscillation
looks stronger for H � �7; 0; 0�T than for other cases.

Figure 2 shows the field dependence of the gap with
D � �0:13; 0:0; 0:02�J. In low fields, we find that the gap is
well described by the following equation:

�� � C�H2=3ln1=6�J=�BHs�; (3)

as predicted by Oshikawa and Affleck. By fitting the
numerical data with the above equation, we find that the
coefficient C� is given by C � �0:0072; 0:059; 0:097� for
D � �0:13; 0:0; 0:02�J. In this system, the gap is finite
even in very low field. This is completely different from
the pure Heisenberg model whose excitations remain
gapless until the spin polarization induced by the applied
field becomes saturated. This difference results from
the effective staggered magnetic field induced by the
alternating g tensor and the DM interaction. Since this
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FIG. 1. Spin gaps versus 1=L in different applied fields for
D � �0:13; 0:0; 0:02�J. The exact diagonalization results (�)
for small lattices are also shown for comparison.
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staggered field couples directly to the strongest spin fluc-
tuation mode at q � �, it gives rise to the instability of
the ground state and opens a gap in the excitation spec-
trum. In high fields, the gap varies almost linearly with H
and its slope is proportional to the corresponding value
gu��. In the intermediate field regime, the gap varies
nonmonotonically with H and shows a local minimum
around H � 25 T in all three directions. This nonmono-
tonic behavior of the gap is also due to the competition
between the applied field and the induced staggered field.
However, we find that this competition does not lead to a
phase transition in the ground state in this crossover
regime, since the ground state energy drops continuously
and smoothly with H.

Now let us turn to the issue whether the model (1) is
sufficient to describe the low-energy magnetic properties
of copper benzoate. In the effective field theory, the criti-
cal exponents of the gaps are determined by the relevant
and marginal operators in the low-field limit. However, as
this theory contains only the contribution of the domi-
nant effective staggered field and ignores all other aniso-
tropic terms after eliminating the DM term, it cannot
explain the field dependence of the gaps along all three
principal axes. Moreover, since the energy gap is very
sensitive to the DM interaction, the value of the D vector
determined from this theory, D � �0:13; 0:0; 0:02�J [9],
would also be inaccurate.

To determine accurately the value of D, we have evalu-
ated and analyzed the field dependence of the gaps around
D � �0:13; 0:0; 0:02�J. By comparison with experiments
[2], we find that the gaps for D � �0:11; 0:0; 0:0�J give the
best fit to the experimental data in all three directions
(Fig. 3). It also agrees with the recent ESR data for H k c00

[16], as well as the results of Essler for H k b and in low
fields for H k c00 [11]. For this D value, our numerical
results for the gap ratios �a00 :�b:�c00 in low fields are
1:1:92:3:56, in agreement with experiments. However,
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FIG. 2. Field dependence of the spin excitation gap. D �
�0:13; 0:0; 0:02�J. The solid lines are the fitting curves of the
numerical results with Eq. (3) the low fields.
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FIG. 3. Comparison between numerical results (� and �)
and the specific heat Cv (�, �) and ESR (�) data for the field
dependence of energy gaps. Solid lines are the fitting curves of
the DMRG results to �� � C�

DMRGH
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�0:11; 0:0; 0:0�J with CDMRG � �0:023; 0:048; 0:089�.
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FIG. 4. Magnetization M versus the applied field H with D �
�0:11; 0; 0�J (solid line) and the pure Heisenberg model (dashed
line) for H k b. The corresponding shift �q=2� (�) is shown
and also compared with the experimental data ( � ) [2].
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FIG. 5. The staggered magnetization as a function of H for
H k b and D � �0:11; 0; 0�J.
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for D � �0:13; 0:0; 0:02�J, the low-field gap ratios are
1:8:2:13:5 and the theoretical results agree with the ex-
perimental data only along the c00 axis (Fig. 3). Therefore,
the Hamiltonian (1) is indeed an appropriate model for
copper benzoate and the discrepancy between the effec-
tive field theory and experiments is due to the neglect of
the anisotropic terms rather than due to the interchain
coupling as previously suggested [9].

For the S � 1=2 Heisenberg model, the momentum of
the antiferromagnetic soft mode is shifted from � to ��
�q in an applied field. This leads to an incommensurate
peak in the longitudinal structure factor. The momentum
shift is predicted to be proportional to the magnetization:

�q � 2�M�H�: (4)

This linear relationship between the momentum shift and
the magnetization was examined by Dender et al. for
copper benzoate [2]. They found that the momentum
shifts at H � 3:5; 5; 7 T for H k b were consistent with
the theoretical results for the pure Heisenberg model [17]
with g � 2:059 and J � 1:57 meV. However, as the ex-
citation spectrum of copper benzoate is fully gaped even
in an arbitrarily small field, unlike in the pure Heisenberg
model, this issue needs also to be reexamined. To do this,
we have calculated the spin-spin correlation functions

S��q �
1

N

X
ij

h�S�i � hS�i i��S
�
j � hS�j i�ie

iq�Ri�Rj�:

The momentum shift �q can be determined from the
peak position of S��q . From our calculations, we find
that S��q behaves differently along the three principal
axes. Sbbq shows a weak incommensurate peak. However,
the peaks of Sa

00a00
q and Sc

00c00
q are pinned at q � �. With H
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increasing, the heights of these peaks are suppressed in
all three directions.

Figure 4 shows the field dependence of the magnetiza-
tion M�H� and the momentum shift �q for H k b. For
comparison, the magnetization curve for the pure
Heisenberg model and the experimental data for �q are
also shown in the figure. As seen from the figure, our
numerical values of �q agree quantitatively with the
experimental data [2]. However, we find that Eq. (4) is
not valid for copper benzoate. In particular, in contrast to
M�H�, �q varies nonmonotonically with H. We believe
this nonmonotonic variation of �q with H can be de-
tected by neutron scattering measurements. In addition,
the magnetization is gradually saturated for large fields as
a direct consequence of the DM interaction. This is differ-
ent from in the pure Heisenberg model where the spins are
fully polarized beyond a critical field �BHc � J, at which
the two magnetization curves differ mostly.

When H k b, spins are polarized ferromagnetically
along the b axis and antiferromagnetically along the
other two directions. Figure 5 shows the staggered mag-
netization as a function of H for D � �0:11; 0; 0�J. At low
207204-3
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fields, both Ms
a00 and Ms

c00 behave as H1=3. This field de-
pendence of the staggered magnetization above 2 T de-
viates from the H1=3ln1=3�J=�BHs� behavior predicted by
the effective field theory [9] and is not sensitive to the D
vector. It may well be that the range of the validity of the
leading approximation in the effective field theory is
narrower for the staggered magnetization than that for
the gap. We should also mention that the numerical accu-
racy is lower when H is below 0.5 T. In intermediate
fields, both Ms

a00 and Ms
c00 vary nonmonotonically with H,

in analogy with the field dependence of energy gaps. In
the large H limit, Ms tends to approach zero. This means
that the staggered field Hs induced by the external field is
overwhelmed by the uniform field H in the high field
limit, although Hs is approximately proportional to H.

The above results show that the DM interaction affects
strongly the properties of low-lying excitations although
this term is much smaller than the Heisenberg exchange
interaction. In particular, the staggered magnetic field
induced by this term opens a gap in the spin excitations
and leads to an antiferromagnetic long range order to
accompany the ferromagnetic long range order induced
by the applied field, shown in Fig. 6. The coexistence of
orthogonal ferromagnetic and antiferromagnetic long
range orders in an external field is a characteristic feature
of quantum spin systems with DM interactions.

In conclusion, we have shown that the microscopic
model (1) including two inequivalent lattice sites and
the DM interaction is a very good description of available
experimental data. It can reproduce correctly the gap
values in all three directions as well as the shift of the
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incommensurate peaks, without resorting to any addi-
tional interaction like interchain coupling. The crossover
to strong field behavior and the breakdown of the relation
between the momentum shift and the magnetization call
for further experimental studies. Finally, we point out
that although the DM interaction is generally small, its
effects could be very important for real materials. In
particular, for metallic materials, e.g., Yb4As3 [3], one
could use external fields to modulate the magnetic trans-
port properties which is one of the focal points for the
spintronics.

We thank D. C. Dender and C. Broholm for correspon-
dence and I. Affleck, C. F. Chen, F. Essler, H. Nojiri,
M. Oshikawa, and K. Ueda for fruitful discussions. This
work is supported in part by the Special Funds for Major
State Basic Research Projects of China and by the
National Natural Science Foundation of China.
[1] D. C. Dender, D. Davidovic, D. H. Reich, C. Broholm,
and G. Aeppli, Phys. Rev. B 53, 2583 (1996).

[2] D. C. Dender, P. R. Hammar, D. H. Reich, C. Broholm,
and G. Aeppli, Phys. Rev. Lett. 79, 1750 (1997).

[3] M. Kohgi, K. Iwasa, J. Mignot, B. Fak, P. Gegenwart,
M. Lang, A. Ochiai, H. Aoki, and T. Suzuki, Phys. Rev.
Lett. 86, 2439 (2001).

[4] P. Fulde, B. Schmidt, and P. Thalmeier, Europhys. Lett.
31, 323 (1995).

[5] M. Oshikawa, K. Ueda, H. Aoki, A. Ochiai, and
M. Kohgi, J. Phys. Soc. Jpn. 68, 3181 (1999); H. Shiba,
K. Udea, and O. Sakai, J. Phys. Soc. Jpn. 69, 1493 (2000).

[6] I. Tsukada, J. Takeya, T. Masuda, and K. Uchinokura,
Phys. Rev. Lett. 87, 127203 (2001).

[7] I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
[8] T. Moriya, Phys. Rev. 120, 91 (1960).
[9] M. Oshikawa and I. Affleck, Phys. Rev. Lett. 79, 2883

(1997); I. Affleck and M. Oshikawa, Phys. Rev. B 60,
1038 (1999).

[10] A. Fledderjohann, C. Gerhardt, K. H. Mütter, A. Schmitt,
and M. Karbach, Phys. Rev. B 54, 7168 (1996).

[11] Fabian H.L. Essler, Phys. Rev. B 59, 14 376 (1999).
[12] J. Z. Lou, C. F. Chen, S. J. Qin, Z. B. Su, and L. Yu, Phys.

Rev. B 65, 064420 (2002).
[13] M. Date, M. Mutokawa, and. H. Yamazaki, J. Phys. Soc.

Jpn. 18, 911 (1963); K. Oshima, K. Okuda, and M. Date,
J. Phys. Soc. Jpn. 41, 475 (1976).

[14] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[15] I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, Density

Matrix Renormalization, Lecture Notes in Physics
Vol. 528 (Springer-Verlag, New York, 1999).

[16] T. Asano, H. Nojiri, Y. Inagaki, J. P. Boucher, T. Sakon,
Y. Ajiro, and M. Motokawa, Phys. Rev. Lett. 84, 5880
(2000); H. Nojiri (private communication).

[17] G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Phys.
Rev. B 24, 1429 (1981).
207204-4


