VOLUME 90, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
23 MAY 2003

Coarse Graining in Micromagnetics

G. Grinstein and R. H. Koch

IBM T. J. Watson Research Center, PO. Box 218, Yorktown Heights, New York 10598, USA
(Received 25 January 2002; published 19 May 2003)

Numerical solutions of the micromagnetic Landau-Lifshitz-Gilbert equations provide valuable
information at low temperatures (7), but produce egregious errors at higher 7. For example, Curie
temperatures are often overestimated by an order of magnitude. We show that these errors result from
the use of block or coarse-grained variables, without a concomitant renormalization of the system
parameters to account for the block size. Renormalization solves the problem of the Curie-point
anomaly and improves the accuracy of more complicated micromagnetic simulations, even at low 7.
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Numerical simulation of complex classical magnetic
systems has become an essential tool in the remarkably
successful effort [1] to increase the speed and capacity of
magnetic storage devices. While most such simulations
have been performed at zero temperature, where the mi-
cromagnetic equations of Landau and Lifshitz (LL) [2] or,
equivalently [3], of Gilbert (G) [4], constitute a reliable
starting point, the decreasing size of magnetic devices
makes thermal fluctuations so large that simulations pur-
porting to be realistic must often include them. Brown [5]
has provided a prescription for adding thermal noise to
the LLG equations so as to ensure that in the long-time
limit the system achieves the stationary Boltzmann dis-
tribution for the energy function describing the magnetic
interactions. In principle, this allows accurate numerical
simulations of magnetic devices at nonzero temperature,
T.1In practice, however, simulations that work well for T
far below the Curie temperature, T, produce surprisingly
bad results closer to 7. In particular, they overestimate
T. itself by factors of 5 to 10 or more [6].

In this Letter, we argue that this difficulty is one of
coarse graining: It is too expensive computationally to
carry out simulations on the microscopic level of individ-
ual spins. Rather, simulators use block or coarse-grained
spins as their basic variables. However, this requires
special care to be paid to how the parameters of the
system vary with the block size. Such analysis is of course
precisely what the renormalization group (RG) was de-
signed to accomplish. Accordingly, in the first part of this
paper we show that the problem of overestimated Curie
temperatures can be solved by an appeal to the low-
temperature renormalization of fixed-length spin models
[7,8]. The main point is that the effective exchange
constant of the coarse-grained system experiences a
temperature-dependent renormalization, thereby produc-
ing a phase transition at the proper temperature.

In the second part of the paper, we show that even at
temperatures far below criticality, magnetic properties
computed numerically from the LLG equations depend
on block size. Using the RG, we estimate this dependence,
verifying the predictions with explicit LLG calculation
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for the particular example of equilibrium M vs H curves
in a simple model. Thus the RG is shown to provide a
prescription for choosing the parameters as a function of
block size in a general LLG computation.

The noisy LL equation for a classical magnetic moment
vector field [9], S(x t), of fixed magnitude, S is

aSx 1) 6E({S}) (= S8E({SY
o X 550 T (S 85(%) )
+ S X B 0. (1)

Here y = 1.76 X 10" C/kg is the gyromagnetic ratio,
« is the dimensionless damping constant, § = S/S and
the energy functional E({S}) describes the total energy
of the system. The first two terms on the right side of
(1) respectively represent the precession of magnetic
moments around their local magnetic fields, —~8E(SY)/
wodS(¥), (with g the vacuum permeability), and the
simultaneous relaxation of the system towards lower en-
ergy. The final term represents random noise. If the
strength, D, of the Gaussian random noise variable,
(%, 1), with correlations (n;(%, 1)n;(¥,t)) = D§;;6 X
(% — #)8(t — t'), satisfies D = 2kzTay/|S|, then, 1n the
long-time limit, and independent of the values of « and v,
the system achieves the equilibrium Boltzmann distribu-
tion for the energy E({S}) at temperature T [10].

By taking the dot product of (1) with S, it is easily
verified that Eq. (1) preserves the spin magnitude at each
point in space (in the Stratonovich interpretation of the
noise [10]). Thus the partition function

=f@@®»

achieved in the ¢ — oo limit incorporates the constraint
that |§(¥)| = 1 for all %.

From Egq. (2), one can see how T. inferred from nu-
merical solutions of Eq. (1) depends on coarse graining.
To do this, we first specialize to the following simple form
for E({S}) in d space dimensions:

T[8(52(F) — D]e kT (2)
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BUS) = [ a'x(Vsy, )
where J measures the exchange strength. Equation (2) is
then the partition function of the nonlinear sigma model
(NLoM) with three components of the field [7].

Aside from the high-wave number (short-distance) cut-
off, A, this model has only one parameter—the dimen-
sionless temperature T = kzT/JA?"4. The model
undergoes its phase transition when this parameter as-
sumes a critical value, T... The RG equation describing the
change of T as the NLoM is coarse grained by eliminat-
ing all Fourier components of S(X) whose wave numbers g
exceed A/b (ie.,, A/b<|gl = A) has been calculated
[7,8] as a double power series in T and € = d — 2:

oT/dl = —€eT + aT? + - - -. 4)

Here the positive constant a = 1/24r, b is a dimensionless
scale factor greater than unity, and / = In(b).

For small T and e, the terms explicitly displayed in (4)
are the dominant ones. In fact these terms capture the
qualitative physics of the model quite generally.
Equation (4) has fixed points at T =0, T = o0, and T =
T* = €/a, respectively controlling the low-temperature
phase, the high-temperature phase, and the critical point.
When the original microscopic value of T, viz., T(I = 0),
is <T* (>T"), then T(l) = 0 (— o0), as [ increases,
indicating that the system is in the low-7, ferromagnetic
(high-T, paramagnetic) phase. Only when T(0) = T does
T(I) remain fixed at T*, meaning that the critical fixed
point is unstable, and that 7" is in fact the dimensionless
critical temperature, T,: T, = 27e + O(€?) [7]. For any
given values of b (=e') and T(0), moreover, Eq. (4) allows
one to calculate the dimensionless temperature T'([) that
produces, on the coarse-grained scale, static equilibrium
properties equivalent to those of the starting microscopic
problem with / = 0 and temperature 7(0).

Solving (4) for T(I) yields the explicit result

T(D) =T /[1+ e(T./T(0) — D] (&)

T(l) and T(0) correspond both at the low-temperature
fixed point, T(0) = 0, and at the critical fixed point,
T(0) = T.. The unphysical divergence of T(I) at a finite
value of T(0) in Eq. (5) results from our using at large T
the small-T solution of Eq. (4). The true T(I) increases
monotonically with 7(0), diverging only at T(0) = oo.
Compare now this coarse graining with those typically
used in simulations of the LLG equations. Such simula-
tions generally use variables that represent regions en-
compassing 10—30 spins on a side, so that b ~ 10-30. The
rescaling of the exchange interactions, and hence of the
reduced temperature, is typically carried out at the level
of dimensional analysis, and omits the important correc-
tions that come from the elimination of the high-wave
vector modes. This amounts to truncating Eq. (4), which
becomes dT(1)/dl = —€eT(l), yielding T(I) = T(0)e €.
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In this case T(I) reaches the critical temperature 7, only
when 7(0) = T9, which exceeds T, by the factor e€’. Thus,
this approximation overestimates the value of T, by e€’.
For the physically relevant case of € = 1 and [ = 2.30, T,
is overestimated by a factor of roughly 10, which is just
the sort of error observed in practice [6].

This explains the order-of-magnitude errors in 7, in-
ferred from micromagnetic simulations using block spins.
Unfortunately, in practice the approximation 7, = 27e
from Eq. (4) does not predict 7, accurately in the physi-
cally relevant case € = 1.If, as is almost always the case,
however, acceptable experimental or numerical estimates
of T, for the material in question exist, then Eq. (§) with
€ = 1 can be used to provide a good approximation to
T(1), at least for T(0)’s not too much greater than 7. This
is illustrated in Fig. 1, which shows equilibrium magne-
tization (M) versus T curves for a model Permalloy cube
of size (48 nm)?, calculated from the 3D NLoM of Eq. (3),
spatially discretized to give model (6) with applied field
H, = 0. The block size was (r = 3 nm)?3; other parameter
values given below Eq. (8). The curves with square and
oval symbols, respectively, result from choosing ex-
change constants A = 9.63 X 1072 J/m, the rough, un-
renormalized value for Permalloy, and A(b) = (T/bT,) X
[1+ b(T,/T — 1)]A, the renormalized value that follows
from Eq. (5) with e = 1, b = 10 [the factor relating the
single spin scale ( ~ 0.3 nm) to the 3 nm scale], and T, =
1000 K, the rough Curie temperature for Permalloy. The
former curve overestimates 7. by roughly the predicted
factor b = 10, while the latter produces a very reasonable
M vs T curve.

Of course, micromagnetic simulations are more
commonly used to study magnetic behavior not near
criticality but for kzT << JA>~?. Here too, the block
size of the calculation influences the result. For example,
Fig. 2(a) shows M vs H, curves computed for a model 2D
magnetic slab with an energy function consisting of iso-
tropic nearest neighbor exchange interactions and an ap-
plied field, H 4- The slab has thickness a, and is divided up
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FIG. 1. M vs T curves for the model Permalloy cube, from
LLG Eq. (6), with parameters as given in text, and unrenor-
malized (square symbols) and renormalized (oval symbols)
values of the exchange constant.
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into a square lattice of blocks of dimension r X r X a,
ie., of volume V = ar’. The magnetic moment of the ith
block, S;, is §; = M,V§;, where M, is the saturation
magnetization, and §; a unit vector. Calculations were
performed using the following spatially discretized ver-
sion of Eq. (1), with open boundary conditions:

38,(1)/ 9t = —yS; X woH — arys; X (S; X woH")
+ Y oS; X (©6)

Here the net field experienced by S;is H = H, +
H,,, where H, = (2A/r*M, )Y ;8;, with A the ex-
change constant and Zj a sum over blocks j that border
i, and (7;(t)9;(0)) = D16,;6(1), with D =2kzTa/
yp3M,V; it follows [5,10] that as ¢t — oo the system
achieves the equilibrium Boltzmann distribution at tem-
perature 7 for the energy function of the nearest neighbor
Heisenberg model in an applied field:

—JHZ§1' 8= Hy - Zfi, (7
(i, ) i

EHeis =

with > ; » a sum on near-neighbor spin pairs, and

Jy = 2Aa, Hy = poH Mar. 8)

Shown in Fig. 2(a) are three equilibrium M vs Hy
curves, computed from Eq. (6) at T = 300° K with a =
2 nm and block sizes: r = 2, 4, and 8 nm. In each case
a=0.1,A=9.63X10"2]/m, wy =47 X 1077 H/m,
moM, = 1T, and the area of the slab is 64 nm X 64 nm.

A 4th order predictor-corrector method with a discrete
time step of 5 X 10~'* s and typical equilibration times of
0.1 nsec was used. It is clear that the three results are
systematically different, but unclear how they are con-
nected to one another or to the true M vs H curves for the
slab. To apply the RG to these questions, note that in
Fourier space the exchange term of Ep.; is proportional
to > (- cos(g;1))|5(g)|?, where §(g) is the Fourier
transform of §;. Writing cos(g;r) ~ 1 — (g;r)*/2, and ap-
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FIG. 2. M vs H, data for r = 2, 4, and 8 nm blocks at 300°:
(a) raw data; (b) data using RG scaling, as in text.
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proximating the square Brillouin zone of model (7) by a
circle of radius A ~ 1/r gives Eyjs the form of the 2D
NLoM (3), with the high-momentumﬁcutoff considered
earlier, and an added applied field, —H - [ d*x§(%).

The equilibrium magnetization, M(T, H), of this
model, as a function of the dimensionless temperature
T and field h = H/JA?, satisfies the RG equation [11]:

M(T, h) = {(OM(T (D), h(1)). (€))

Neither the rescaling factor (/) nor the /-dependent field
and dimensionless temperature, h(I) and T(I) can be
calculated exactly. However, in d = 2 + € dimensions,
they have, again, been calculated [7,8] in a double power
series expansion in € and 7', with the result:

() =e B 1T @) hINI (10)

where I(T, h) = T/[27(1 + h)], and T(I) and h(l) are
determined by the differential equations

dT(l)/dl = [—e + I(T(1), h(D)]T(1),

1D
dh(l)/dl = 2h(1),
with the initial conditions T(0) = T and h(0) = h.
In 2D, where € = 0, Egs. (11) can be solved to yield

T() = T/[1 + TX() /4], h() = he?;  (12)

here X(I) = In{1 + he? /(1 + h)e?}. The scale factor {(1)
in Eq. (10) is difficult to calculate exactly. However, in the
often realistic limit where & and T are both small com-
pared to unity, X(/) reduces to —2I + O(h), whereupon

() — e T127L + O[hT /27, (T /27)2]h (13)

In this limit, results (12) for fixed T can be written J(I) ~
J(O)ekaTl/ZwJ(O) and H(l) —_ H(O)eZIekaTl/za-rJ(O)'

This explains qualitatively why the raw M vs H,
curves shown in Fig. 2(a) look so different: In addition
to omitting the (7'1)-dependent corrections to J and H
required to make the different calculations equivalent, the
naive LLG computations omitted the scale factor £([). To
check that this works quantitatively, we recalculated from
Eq. (6) the M vs H curves for block sizes r = 4 nm and
r = 8 nm, using values of the exchange constant A = A(/)
related to the value, A(0) = 9.63 X 107!2 J/m, used at
r=2nm, by A(l) = A(0)e %sT!/27/u_for | = In2 and [ =
In4, respectively. These 4 and 8 nm magnetizations were
then multiplied by the scale factors £(I) = e *sT!/27/n
and plotted against e*s7/27/u [, The results for 4 nm
(I =1n2) and 8 nm (/ = In4) are plotted along with the
raw 2 nm data in Fig. 2(b). The three curves are essen-
tially indistinguishable. Thus the RG does excellently in
connecting micromagnetic data acquired with different
block sizes in our simple model, despite the approxima-
tions involved in relating model (6) to the NLoM model,
the fact that the quoted RG results are valid only in the
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FIG. 3. (a) Raw M vs H, data for r = 4 nm blocks at five
equally spaced temperatures from 150° to 750°; (b) RG-
scaled data for r = 2, 4, and 8 nm blocks, at the same five
temperatures.

thermodynamic limit, and the approximate nature of the
RG calculations themselves.

A large part of this success is that x = kgzT/27J}, the
small parameter for the low-T RG expansion, is indeed
small at 300° for typical magnetic material, reflecting the
high values of magnetic critical temperatures. For the
parameters used here, x ~ 0.016. Moreover, even at
3000 Oe, the largest field studied here, h ~ Hy/Jy ~
1073, so the approximation for (/) in Eq. (13) is valid.

Figure 3 illustrates the effect of changing 7. The upper
panel shows raw M vs H, data for r = 4 nm, for T’s
between 150° and 750°, with all other parameters as in
Fig. 2. The lower panel shows, for each T value, three
curves corresponding to r =2, 4, and 8 nm, scaled
according to the RG prescription. Though the RG predic-
tions become less reliable as 7/T, increases, the align-
ment of the three curves is respectable even at 750°.

Practical micromagnetic simulations involve not just
Zeeman and exchange energies but anisotropy and dipo-
lar terms. The renormalization of the coefficients of such
terms can also be treated with the low-temperature ex-
pansion methods discussed here. The renormalization of
anisotropy strength proceeds similarly [8] to that of an
applied field. For example, addition to the NLoM in an
applied z field of the easy uniaxial anisotropy energy,
— 1A [d?xs2(%), replaces Eqs. (11) by

dT(l)/dl = [—e + K(T(1), h(1), g(INIT (D),
dh(l)/dl = 2h(]), (14)
dg()/dl = [2 — 2K(T(1), h(1), g(1))]g(D),

where g = A/JA?, and K(T, h, g) = T/[27(1 + h + g)].
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Finally, {, the scale factor lfor the magnetization in
Eq. (10), becomes {(I) = e~ /i K@) AE).eNdr

In the simplest low-g approximation, dipolar interac-
tions in the 2D NLoM can be written as the sum of a hard
uniaxial anisotropy (demagnetizing) term, perpendicular
to the sample, and a nonlocal quadratic term (with co-
efficient denoted u,), involving only the components of
the spins within the slab. For small u,, u; obeys the low-T
RG equation duy(l)/dl = (1 — 2K(1))uy(I) [12]. General-
izations to d > 2 and/or more realistic lattice models can
be obtained by similar methods [12].

We conclude that, apart from being a numerical neces-
sity, the discretization of the LLG equation embodies the
elimination of small scale degrees of freedom and there-
fore contains important physics. For numerical micro-
magnetics in practical situations, it will be useful to
develop approximate RG methods [13] that correspond
more precisely to changing block sizes in the LL equation
than does momentum shell RG, and that produce better
approximations for 7, and other high-temperature proper-
ties than does the low-temperature RG discussed here.
The principle that micromagnetic parameters cannot be
chosen independent of numerical block size and the use of
the RG as a prescription for choosing these parameters
can be fruitfully incorporated into numerical endeavors.
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