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Gutzwiller variational method is applied to an effective two-dimensional Hubbard model to
examine the recently proposed gossamer superconductor by Laughlin (LANL cond-mat/0209269).
The ground state at half filled electron density is a gossamer superconductor for smaller intrasite
Coulomb repulsion U and a Mott insulator for larger U. The gossamer superconducting state is similar
to the resonating valence bond superconducting state, except that the chemical potential is approxi-
mately pinned at the mid of the two Hubbard bands away from the half filled.
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where j �BCSi is a BCS superconducting state, and �� �
the Gutzwiller’s approach, the on-site Coulomb repulsion
is treated exactly, while the kinetic energy is studied
Theories for high temperature superconductivity con-
tinue to attract much interest in condensed matter physics.
Soon after its discovery, Anderson proposed the idea of
resonating valence bond (RVB) state for the observed
unusual properties in high Tc superconducting Cu-oxides
[1]. In the RVB picture, each lattice site is either unoccu-
pied or singly occupied by a spin-up or down electron.
The spins are coupled antiferromagnetically without long
range order. The charge carriers move in the spin liquid
background and condense to a superconducting state [2,3].
The RVB states are oftenly studied using two-dimen-
sional Hubbard or t-J models [1,4]. In this scenario, the
undoped cuprate with density one electron per site, or half
filled, is a Mott insulator, and the superconductor is
viewed as a doped Mott insulator when additional holes
or electrons are introduced. A Mott insulator is a special
type of insulator casued by electron interaction. It has
been established that the ground state of many models in
1-dimensional chain or in ladders at half filled are Mott
insulator[5]. In two or higher dimensions, a Mott insu-
lator has a strong tendency toward antiferromagnetic
or other types of ordering states breaking translational
symmetry.

Very recently, Laughlin has proposed an interesting
new notion, the gossamer superconductor, for high tem-
perature superconducting Cu-oxides [6]. In a gossamer
superconductor, the superfluid density is very thin, in
contrast to the conventional superconductor. Laughlin
has proposed an explicit microscopic wave function for
the gossamer superconductor, which has the following
form,
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i�1� �0ni"ni#� is a projection operator to partially

project out doubly occupied electron states on each lattice
site i. ni� � cyi�ci� is the electron number operator of spin
� �"; # at site i, and �0 is a parameter between 0 and 1. If
�0 is close to 1, the projection operator strongly sup-
presses the superfluid density. In the gossamer supercon-
ducting state, the probability to have both spin-up and
spin-down electrons occupying the same lattice site is
largely reduced but remains to be finite. Because of the
partial projection, the state is superconducting even at
half filling. This is different from the RVB theory where
the electron doubly occupied states are completely
projected out, hence the half filled RVB state is a
Mott insulator and the superconductivity occurs only
away from the half filled. As it has been shown by
Laughlin[6], the gossamer superconducting state in
Eq. (1) is an exact ground state of a model Hamiltonian
given by HL �

P
~kk�E~kk�

~bby~kk�
~bb ~kk�, where E~kk� � 0, ~bb ~kk� �

��b ~kk��
�1
� , and b ~kk� is the quasiparticle annihilation

operator of the BCS state, b ~kk� j �BCSi � 0. ��1
� is the

inverse of ��. Laughlin has also argued that the gossa-
mer superconducting state is related to the large on-site
Coulomb repulsion.

It will be interesting to examine the possible gossamer
superconducting state in a more realistic model. As it is
generally believed that the large Coulomb repulsion may
lead to a Mott insulator at half filling, it will also be
interesting to examine the possibility of the phase tran-
sition from a Mott insulator to a gossamer superconductor
as the electron interaction strength decreases. Since a
doped Mott insulator can be a RVB superconducting
state, it is natural to ask the question of the similarities
and the differences between the gossamer and the RVB
superconductors.

In this Letter we intend to examine these questions by
studying an effective Hubbard model given in Eq. (2)
below using Gutzwiller’s variational method [7]. In
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variationally, so that it is suitable to examine some issues
in strongly correlated systems. That method was used by
Brinkman and Rice [8] to study the phase transition
between an insulator and a metallic state described by a
partially projected Fermi liquid state. The variational
method applied to the effective Hubbard model in
two-dimension demonstrates a phase transition from a
gossamer superconductor for smaller intra-site Coulomb
repulsion U to a Mott insulator for larger U at half filling.
The gossamer superconductor is shown similar to the
RVB superconducting state of the doped Mott insulator.
However, its chemical potential is found to be approxi-
mately pinned at the mid of the lower and the higher
Hubbard bands, different from the RVB state where the
chemical potential is shifted to the lower Hubbard band
upon doping.

We study an effective Hubbard Hamiltonian,

H � U
X
i

ni"ni# �
X
hiji�

�tijc
y
i�cj� 	 h:c:� 	

X
hiji

Jij ~SSi 
 ~SSj:

(2)

In this Hamiltonian, we have introduced an antiferro-
magnetic spin-spin coupling term (Jij � 0) to account for
the virtual electron double occupancy effect. In the large
U limit, Jij � 4t2ij=U. This model may be viewed as an
effective Hamiltonian of the Hubbard model. The inclu-
sion of the antiferromagnetic spin coupling appears con-
sistent with the weak coupling renormalization group
analyses [9], and is appropriate in the variational ap-
proach studied here. Although the precise values of Jij
are to be determined, that does not alter the qualitative
physics we will discuss in this paper. In the limit U ! 1,
the model is reduced to the t-J model.

We consider j �Li in Eq. (1) as a variational trial wave
function to examine the superconductor-insulator transi-
tion at half filling, and to compare the gossamer super-
conducting state with the RVB state away from the half
filled. In our theory, u ~kk, v~kk, and �0 are variational pa-
rameters. In the limiting case u ~kkv ~kk � 0, j �BCSi reduces
to the Fermi liquid state. �0 � 0 corresponds to the un-
correlated state, and �0 � 1 corresponds to the limit of
no doubly occupied state. �0 � 1 if U ! 1.

The variational energy E � hHi is given by,

E � Ud	 hHti 	 hHJi; (3)

where d � hni"ni#i is the electron double occupation num-
ber, and 0 � d � 1. hAi is the expectation value (per site)
of operator A in the state j �Li. The first term is the
intrasite Coulomb interaction energy, while the second
and the third terms are the average kinetic and spin-spin
correlation energies, respectively. Note that in the
Gutzwiller approach and at half filling, d is a measure
of the mobile carrier density nc and proportional to
nc=m� measured in the a.c. conductivity with m� the
effective mass. At d � 0, i.e., �0 � 1, we have hHti � 0,
and E � hHJi at the half filling. This state describes a
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Mott insulator. The case with d > 0 or 0 � �0 < 1 de-
scribes Laughlin’s gossamer superconducting state.

The variational parameter d is determined by the con-
dition @E�d�=@d � 0, or

U	 @hHti=@d	 @hHJi=@d � 0: (4)

At half filling, we expect a transition from the Mott
insulator at larger U to the gossamer supercondutor at
smaller U as U decreases passing through a critical point
Uc. To study this phase transition, we follow Brinkman
and Rice [8] and compare the energies of the two states
with the difference that here we consider the projected
BCS state while Brinkman and Rice considered the
projected Fermi liquid state. The transition point Uc,
assumed to be second type, is given by Uc �
��@hHti=@d� @hHJi=@d�jd�0. For U > Uc, there is no
solution of Eq. (4) for physical values of d, indicating
that d � 0.

We use the Gutzwiller approximation [7] to carry out
the variation and to estimate Uc. In the Gutzwiller ap-
proximation, the effect of the partial projection operator
on the doubly occupied sites is taken into account by a
classical statistical weighting factor which multiplies the
quantum coherent result calculated for the unprojected
state j �BCSi. A clear description of the method has been
given by Vollhardt [10]. The method was used to study the
two-dimensional t-J model [11], where the projection
operator corresponds to the case of � � 1 (the complete
projection). In the present model, the hopping and the
spin-spin correlation energies in the state j �Li are re-
lated to those in the unprojected state j �BCSi by the
corresponding renormalized constants gt and gs:

hcyi�cj�i � gthc
y
i�cj�i0; h ~SSi 
 ~SSji � gsh ~SSi 
 ~SSji0; (5)

where hAi0 is the expectation value of operator A in the
state j �BCSi. The renormalization facotrs gt and gs are
determined by the ratios of the probabilities of the cor-
responding physical processes in the states j �Li and
j �BCSi. By counting the probabilities [11] we obtain
these renormalization constants for the partially pro-
jected state (n: electron density),
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�n� 2d��

���
d

p
	

����������������������
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�2
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�

�n� 2d�
�1� n=2�n

�
2
: (6)

The value of gt is the same as that previously obtained for
the projected Fermi liquid state [7,10]. At d � 0, we have
gt � 2�=�1	 �� and gs � 4=�1	 ��2, with � � 1� n,
recovering the results in Ref. [11]. At half filling, n � 1,
we have gt � 8d�1� 2d� and gs � 4�1� 2d�2. Using the
Gutzwiller approximation, The variational condition for
d in Eq. (4) becomes

@E=@d � U	
@gt
@d

hHti0 	
@gs
@d

hHJi0 � 0: (7)
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We note that hHti0 < 0, hHJi0 < 0, and that d � d0 with
d0 � n2=4 the value at �0 � 0. Using Eqs. (6), we
have @2E=@d2 � �@2gt=@d2�hHti0	�@2gs=@d2�hHJi0 > 0.
Therefore, the solution of Eq. (7) corresponds to a mini-
mum in energy or a saddle point. Since @gt=@d ! 	1 at
d ! 0	 for n < 1, there is always a solution of Eq. (7)
away from half filled. At n � 1, Eq. (7) has no solution for
minimum energy if U > Uc, and Uc is the transition
point between the Mott insulator and the gossamer super-
conductor. Note that Uc is generally positive if the kinetic
energy term in the uncorrelated state dominates. In the
insulating phase, only the spin-spin interaction is non-
zero. The problem becomes identical to that in the RVB
theory at half filling, and there is a redundancy in the
fermion representation of the state due to a local SU(2)
symmetry of the spin Hamiltonian [11,12]. The redun-
dancy is removed in the gossamer superconducting state
for the kinetic energy term breaks the SU(2) symmetry,
similar to the effect of doping in the t-J model. At d � 1,
the symmetry of the gossamer superconductivity is the
same as the symmetry of the RVB state. Within the
Gutzwiller approximation, the pairing order parameter
in the gossamer superconductor is related to the uncorre-
lated state by a renormalized factor gt,

hc ~kk"
c
� ~kk#

i � gthc ~kk"
c
� ~kk#

i0: (8)

Near the transition point, gt � 8d � 1, indicating the
smallness of the superfluid density, a quantitative measure
of the gossamer superconductivity. It is interesting to note
that the pairing order parameter in the RVB state has also
the form of Eq. (8) with gt � 2� for � � 1. This com-
parison indicates that a gossamer superconductor with
double occupation d at half filling is similar to the RVB
superconductor at doping � with the correspondance of
� � 4d.

In what follows we take an example and consider the
effective Hamiltonian in a 2-dimensional square lattice
with only the nearest neighbour hopping tij � t and the
nearest neighbor spin coupling Jij � J and consider the
case n � 1. For any given value of d, the Coulomb inter-
action term in the present theory contributes a constant
Ud to the variational energy, and the variational proce-
dure for other parameters (u ~kk and v~kk) is almost the same
as that in study of the t-J model carried out in Ref. [11]
except that the renormalization constants gt and gs here
depend also on the double occupation d.

We introduce two correlation functions ( � x; y),
� �

P
��hci�ci	 ;��i0, # �

P
�hc

y
i�ci	 ;�i0. The var-

iational solution is then given by the coupled gap equa-
tions,

� �
X
~kk

cosk � ~kk=E ~kk; # � �
X
~kk

cosk # ~kk=E~kk;

where � ~kk �
P

 � cosk , #~kk � ~$$ ~kk �
P

 # cosk . In

the above equations, E~kk �
�����������������������
j� ~kkj

2 	 #2
~kk

q
, ~$$ ~kk �

��2gtt�coskx 	 cosky� � ~%%�=�3gsJ=4�, and ~%% is related
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to the chemical potential % by

% � ~%%	
@gt
@n

hHti0 	
@gs
@n

hHJi0: (9)

In Eq. (9), the second and the third terms originate from
the n dependences of gt and gs in the variational proce-
dure [11], which will be important in calculation of the
chemical potential of the state. These gap equations must
be solved simultaneously with Eq. (7) for d and the
electron number equation given by � �

P
~kk# ~kk=E ~kk.

We first discuss the half filled case. The ground state of
the insulating phase (d � 0) is the same as that of the
Heisenberg model. In the metallic phase (0< d � 1), the
kinetic energy breaks the local SU(2) symmetry and
favors the d-wave superconducting state with �x �
��y. The symmetry is the same as the symmetry studied
in the t-J model slightly away from the half filled
[11,13,14]. At the superconductor-insulator transition
point, we have hHti0 � �2

���
2

p
tC and hHJi0 �

��3=4�JC2, with C � 1
2

P
~kk

���������������������������������
cos2kx 	 cos2ky

q
� 0:479.

We estimate from these values that Uc � 10:8t� 2:75J
for large J=t. While for small J=t, Uc � 128t='2 � 13t.

We now discuss the slightly less than half filled case.
We expect that the variational parameter d is a smooth
function of the electron density around the half filled. The
gossamer superconducting state essentially remains un-
changed in the regime � � d, and the superconducting
order parameter is mainly controlled by d, weakly de-
pending on � as we can see from the expression for gt.
The chemical potential % can be calculated by using
Eq. (9). In the limit � ! 0	, ~%% ! 0, and we have % !
�4�1� 4d�hHti0 	 8�1� 2d�hHJi0 � U=2. In the last
step of the above calculations, we have used variational
equation (7) to relate the kinetic and spin coupling ener-
gies to the Coulomb energy. Since % � U=2 at the half
filled by electron-hole symmetry of the model, we con-
clude that in the gossamer superconducting state the
chemical potential is continuous at the half filled, and is
pinned at the middle of the lower and the higher Hubbard
bands. This result is reasonable because the gossamer
superconducting state is a metallic state and the chemical
potential is expected to be continuous [6]. This feature is
in contrast to the RVB state discussed below.

If U > Uc with Uc defined as the critical U at half
filling, the state changes dramatically from an insulator
to a RVB superconducting state as the electron density
varies away from the half filled. At U � Uc, d changes
very little from zero [15], the physics is essentially the
same as that given by the t-J model. While the RVB state
is similar to the gossamer superconducting state in the
sense that they have the same pairing symmetries and
small pairing order parameters, the chemical potential in
the RVB state is very different from that in the gossamer
superconductor. To see this explicitly, we consider the
limit � ! 0	, so that we have ~%% ! 0, and @gt=@n �
�2, @gJ=@n � 8. From these values, we obtain % !
�2hHti0 	 8hHJi0 � 2:7t� 1:38J, which is about Uc=4
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for J � t, and is much smaller than the chemical poten-
tial U=2 at the exact half filled. We conclude that the
chemical potential in the RVB state is discontinuous at
the half filled, and it is shifted from U=2 at the half filled
to the lower Hubbard band away from the half filled. The
difference in the chemical potentials in the gossamer and
the RVB states can in principle be distinguished in spec-
troscopic experiments, although other symmetry broken
states not included in the variational theory and the in-
homogeneity will complicate the analyses.

The metal or insulator nature of the variational gossa-
mer superconducting states we considered here are insen-
sitive to the electron band structure. Some other broken
symmetry states such as antiferromagnetism, which we
do not include in the theory, are more sensitive to the band
structure. For instance, the Hubbard model with nearest
neighbor hopping integral in a square lattice has perfect
nesting at half filling, and any small value of U leads to an
antiferromagnetic or spin density wave ground state.
Therefore, the present theory may be more applicable to
systems with general electron band structure. Further-
more, the phase transition and the similarities and the
differences between the gossamer and the RVB super-
conductors should be relevant to the systems away from
half filled. It is interesting to note that the half filled
superconducting state may be stabilized against the anti-
ferromagnetism in the presence of an explicit pair hop-
ping term in the Hubbard model as studied by Assaad
et al. [16]. The gossamer superconductor should also be
relevant to the frustrated magnetic systems where the
anitferromagnetism is suppressed. For instance, there
have been numerical studies of the antiferromagnetic
Heisenberg spin model with nearest and next nearest
neighbor couplings to show evidence for a spin liquid
ground state [17]. There have been numerical studies of
the Hubbard model at half filling with nearest and next
nearest hoppings to demonstrate a paramagnetic insulat-
ing phase with a transition to a metallic phase at zero
temperature as U decreases [18]. It will be interesting to
examine the possible gossamer superconductivity in that
metallic phase.

In summary, we have used the Gutzwiller variational
method to study an effective Hubbard model. The calcu-
lation based on the Gutzwiller approximation supports
Laughlin’s recent proposal of gossamer superconductor at
relatively smaller intrasite electron Coulomb repulsion U,
and predicts a phase transition from the gossamer super-
conductor to the Mott insulator as U increases at density
one electron per site. The gossamer superconductor is
similar to the RVB superconducting state with the major
difference on the positions of their chemical potentials.
The Gutzwiller approximation we used in this Letter has
been previously tested against variational Monte Carlo
method [19] with quite good agreement [11]. The varia-
tional parameter d in the Gutzwiller method has one-to-
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one correspondance with the parameter �0 in Laughlin’s
theory. As �0 varies from 0 to 1, d varies monototically
from the uncorrelated value d0 to 0. The explicit relation
between d and �0 is given by gt � g2, with gt given by
Eq. (6) in the present Letter and g2 by Eq. (19) in Ref. [6].
In the limit �0 ! 1, d � �1� �0�=2. The variational
calculation can be in principle extended to include also
an antiferromagnetic order parameter. We speculate that
the ground state at half filling can be an antiferromag-
netic insulator at large U and a gossamer superconductor
possibly coexisting with the antiferromagnetism at
small U.
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