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We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromag-
nets. The topological nature of the AHE leads to the integer quantum Hall effect from a metal, i.e., the
quantization of �xy induced by the localization except for the few extended states carrying Chern
numbers. Extensive numerical study on a model reveals that Pruisken’s two-parameter scaling theory
holds even when the system has no gap with the overlapping multibands and without the uniform
magnetic field. Therefore, the condition for the quantized AHE is given only by the Hall conductivity
�xy without the quantum correction, i.e., j�xyj > e2=�2h�.
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but the net flux is zero when averaged over the unit cell. formation c � �c ; c � of the spinor representation
The origin of the anomalous Hall effect (AHE) has
been a subject of extensive controversy for a long term.
One is based on the band picture with the spin-orbit
interaction [1], while the other is due to the impurity
scatterings [2]. Most of the succeeding theories follow
the idea that the AHE occurs due to the scattering events
modified by the spin-orbit interaction, i.e., the skew scat-
tering or the side jump mechanism [3]. Recently, several
authors recognized the topological nature of the AHE
discussed in Refs. [4–6]. In this formalism, the Hall con-
ductivity �xy is given by the Berry phase curvature in the
momentum ( ~kk) space integrated over the occupied states
[7]. Also, there appeared some experimental evidence
supporting it [8]. Therefore, it is very important to study
the effect of disorder, which makes ~kk ill defined, to see the
topological stability of this mechanism for the AHE.

This issue is closely related to the integer quantum Hall
effect (IQHE) [9], but there are several essential differ-
ences. Usually, the topological stability which guarantees
the quantization of some physical quantity, e.g., �xy, has
been discussed in the context of the adiabatic continu-
ation [9]. Therefore, it appears that the gaps between
Landau levels in a pure system are needed to start with,
even though the disorder potential eventually buries them.
In the IQH system without disorder, the periodic potential
is irrelevant because the carrier concentration is much
smaller than unity per atom. Although numerical simu-
lations [10] use lattice models, the main concern is put on
the limit of dispersionless Landau levels separated by the
gaps. In the present case, i.e., in ferromagnetic metals,
there are multiple bands overlapping without the gaps in
the density of states. The periodicity of the lattice remains
unchanged, which prohibits the uniform magnetic field
and also gives a large energy dispersion. In the language
of the effective magnetic field for electrons, it reaches a
huge value of the order of �104 T, i.e., the magnetic
cyclotron length is of the order of the lattice constant,
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Therefore, these two cases belong to quite different limits
although the symmetries of the systems are common,
i.e., the unitary class without time-reversal nor spin-
rotational symmetry.

In this Letter, we report on an extensive numerical
study on two-dimensional (2D) models for the AHE
including the disorder potentials. It is found that the
topological nature of the AHE leads to a dramatic phe-
nomenon, i.e., the ferromagnetic metal turns into an in-
teger quantized Hall system by introducing disorder. This
is due to the topological stability of the Chern numbers
carried by the extended states which are energetically
separated by the continuum of the localized states in
between. Namely, the localized state cannot have a finite
Chern number, and the integer topological number cannot
change smoothly, i.e., it jumps when it changes. These
two facts lead to the protection of the extended state
against the weak disorder. The finite-size scaling analysis
is compatible with the two-parameter renormalization-
group theory of Pruisken [11], which predicts the plateau
transition at j�xyj � 0:5e2=h. The critical exponents are
consistent with that of the IQHE. This problem is not an
academic one; the recent technology can fabricate very
fine thin films of ferromagnetic metals with a large
enough single domain. When the coherent length of
such a thin film is longer than the thickness, it can be
regarded as a multichannel 2D system. These systems can
offer a possible laboratory to test our theory.

The essence of the AHE is that the Berry phase of the
Bloch electron is induced by the spin-orbit interaction in
the presence of the magnetization, which is modeled by
the complex transfer integrals [5]. Each band often gains
a finite Chern number even though the density of states
has no gap. The minimal model describing this situation
is that proposed by Haldane [12] and its extension. This
model is defined on a honeycomb lattice containing two
atoms in a unit cell (Fig. 1). Using the Fourier trans-
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�0 is the unit matrix and �1;2;3 are the Pauli matrices. Here
we assume the perfect spin polarization and use the
spinless fermions. The complex next-nearest neighbor
hopping integral t1ei� is introduced in addition to the
real one t0 between the nearest neighbors. ~aatr1;2;3 are the
lattice vectors of the triangle sublattice, while ~aahc1;2;3 are
those of the honeycomb lattice (Fig. 1).

The extended model is given by adding another layer
with the change t1 ! �t1 to the original single-layer
model given above. Furthermore, we introduce the energy
difference between the layers by shifting the uniform
potential �u. Then the extended model has the symmet-
ric and gapless density of states in contrast to the original
one. In Fig. 2 are shown the density of states and �xy for
the single-layer [Fig. 2(a)] and double-layer [Fig. 2(b)]
models, respectively. In the single-layer case, �xy is
quantized to be e2=h when the Fermi energy lies within
the gap, while it is not in the double-layer case where the
gap collapses. We chose in Fig. 2 and below the parameter
values as t1 � 0:2t0, m � 0:4t0, and � � �=3 in order to
demonstrate the scaling law most clearly. However, once
the scaling law is established, we can discuss more real-
istic cases as will be done later.

Now we introduce the on-site disorder potential to the
single-layer model, which is randomly distributed in the
range 
�W=2; W=2� and study the localization problem
in terms of the transfer matrix method [13]. Figure 3(a)
shows the dependence of the renormalized localization
length �M=�2M� of a quasi-1D tube with 2M sites circum-
ference. The length of a tube is typically �105 sites and
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FIG. 1. Haldane’s model defined on a honeycomb lattice [12].
Open and solid circles represent the A and B sublattice sites,
respectively. The dashed lines represent next-nearest-neighbor
hopping.
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the accuracy of data is within a few percent. We can see
that extended states are isolated in energy. They merge
with each other at a critical value 6<Wc < 7 and dis-
appear, i.e., all states are localized. This behavior is the
same as that observed in the ordinary IQH system on a
square lattice with external magnetic field [10]. It is noted
that the pair annihilation of extended states always occurs
between those with the opposite Chern numbers [10].
Actually, two extended states in Fig. 3 originate from
lower and upper bands which have opposite Chern num-
bers, �1, respectively.

Next we analyze the data to obtain a characteristic
length ��E;W� by the scaling hypothesis, �M�E;W�=M �
f
��E;W�=M�, where f�x� is a scaling function [14]. As
for a localized state, ��E;W� is interpreted as its local-
ization length in the thermodynamic limit. Figures 3(c)
and 3(d) show ��E;W � 5:0t0� around the lower extended
state at E � Ec. From this data, the critical exponent
 (� / jE� Ecj

� ) and Ec are estimated as  � 2:37�
0:05 and Ec � ��0:69� 0:01�t0. This value is in reason-
able agreement with that estimated in the IQH system
[15], e.g.,  � 2:35� 0:03 [16].

In Fig. 3(b) the scaling property of �xy is shown. There
are two critical points where there is no size dependence
and which separate the two energy regions with the
opposite size dependences. �xy at these critical points
takes the value of about 0:5e2=h. This is consistent with
the analysis in terms of the effective field theory for the
IQH system in the weak-localization region [11] and
strongly suggests that the critical properties of this tran-
sition are the same as those of the plateau transition
�xy:0 $ 1. The energy of these critical points coincide
with that where the localization length diverges in
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FIG. 2. Hall conductivity �xy and the density of states for the
(a) single-layer and (b) double-layer models.
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Figs. 3(a) and 3(c). This means that the extended states
with Chern number �1 exist there, and �xy in the ther-
modynamic limit (M ! 1) stays quantized to be e2=h
between these two energies [broken line in Fig. 3(b)].

Now we consider the double-layer model. The IQHE
never occurs in the pure case with the above set of
parameters. We consider the case in which there are
scattering events both within and between these layers.
In this case, there is no gap between the initial and final
states of the elastic scattering, and it is possible that all
the states are localized once the disorder is introduced.
However, as shown below, the extended states and the
Chern number carried by them are stable against the
weak disorder. Here we define the strength of intralayer
scattering as W0 and represent the strength of interlayer
scattering by W1. As seen in the upper panels in Fig. 4,
�M=�2M� does not show M dependence at E � �1:5t0
and E � 0. This means that the extended states survive
there at least up to W1 � 1:0t0.

We next present the system-size dependence of �xy in
the lower panels in Fig. 4. There appear two critical
points for the transitions �xy:0 $ 1 and �xy:� 1 $ 1.
From the particle-hole symmetry, �xy��E� � ��xy�E�.
Therefore, there appear three critical points in the whole
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FIG. 3 (color). (a) Localization length �M of a quasi-1D tube
where M is the number of A�B� sites on the circumference. M �
4; 8; 16; 32 are plotted. (b) System-size dependence of �xy in
the single-layer system with 2L� 2L lattice points. The num-
bers of samples averaged are 81 920; 20 480; 5120; 1280 for L �
4; 8; 16; 32, respectively. The errors are one standard deviation.
(c) Log plot and (d) log-log plot of localization length � around
the lower extended state at Ec � ��0:69� 0:01�t0. The solid
line is a fitting result with the slope � � �2:37. The data of
M � 64 are included in the analyses for the localization length
and its critical exponent.
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energy region. Because the single-layer model has at most
two critical points, the double-layer model could have at
maximum four. One may wonder why there appear only
three critical points in the present case. This is because
the middle one is composed of two extended states which
originally contribute to different critical points but carry
the same Chern number, i.e., �1. These extended states
merge (at least in the present numerical accuracy) but
never pair annihilate, because they carry the nonzero
Chern number �2. Namely, the conservation law of the
topological charge prevents the localization.
�xy at the lower critical point takes the value

�0:5e2=h. This value is again consistent with the analy-
sis in Ref. [11]. However,�xy at the middle critical point is
zero. This critical behavior seems to violate the prediction
by the analysis in Ref. [11]. However, recent numerical
studies for the IQH system reveal the new type of critical
phenomena, i.e., the direct transitions �xy:0 $ n (n > 1)
[10], which were experimentally observed in advance
[17]. The critical property around the middle point is
considered to belong to the same class as �xy:0 $ 2.
Although the sample size is not large enough in the
double-layer model, the size dependence of �xy is con-
sistent with the quantized plateau [broken lines in the
lower panels of Fig. 4].

It is not difficult to generalize the nonlinear sigma
model approach for the localization problem to the case
of multicomponent model without time-reversal nor spin-
rotational symmetry. These ‘‘components’’ mean orbitals,
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FIG. 4 (color). Upper panels: the localization length �M of a
quasi-1D tube where M is the number of A�B� sites on the
circumference. M � 4; 8; 16; 32 are plotted. Lower panels: the
system-size dependence of �xy in the double-layer system with
2L� 2L lattice points. The numbers of samples averaged are
81 920; 20 480; 5120 for L � 4; 8; 16, respectively. The color of
each line is for the same system size as in Figs. 3(a) and 3(b).
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spins, and channels in the multilayer cases altogether.
This approach does not assume the finite gap at the start.
Following the derivation in Ref. [11], we obtain the
Lagrangian

L
fQlg� � �
X
l;l0

1

2

g�1�ll0

Z
d~rrTr
Ql�~rr�Ql0 � ~rr��

	 Tr ln

�
E� ĤH 	 i's	

X
l

iQlIl

�
; (2)

where 
g�ll0 is the scattering strength between components
l and l0, and 
Il�l0l00 � *l0l*l00l. Tr ( ln) is the trace (loga-
rithm) of a matrix with functional index ( ~rr) and discrete
indices (p; a; l), where p � � corresponds to the ad-
vanced and retarded fields, respectively, and a runs over
replicas. The nonlinear sigma model is the effective
model for the massless Goldstone modes. In order to
extract these modes, the parametrization Ql � TlPlT

�1
l

is useful. From the above Lagrangian, it is clear that
intercomponent scatterings 
g�1�ll0 (l � l0) lock the out-
of-phase modes Tl � Tl0 (l � l0), and therefore the effec-
tive model for massless in-phase modes, i.e., Tl � T,
reduces to the model identical to that in Ref. [11]. The
coefficients of the stiffness and topological terms for
these modes coincide with �xx and �xy, respectively. It
is noted that these �xx and �xy contain the contributions
from all components. Then the scaling of �xx and �xy
remains the same as given in Ref. [11]. This supports the
finite-size scaling study given above.

In real systems, the Coulomb interaction cannot be
neglected. In the IQH system, the lnT dependence of
�xx is observed [18] and is attributed to the quantum
Coulomb correction [19]. However, the quantized �xy in
the ground state is well described by the noninteracting
electron model. The situation is similar here for the
quantized AHE. In the thin film of Fe, lnT dependence
of �xx is observed while not for �xy [20], which is
explained by the quantum Coulomb correction combined
with the skew scattering mechanism [21].

Usually the AHE is estimated by .H � �.2
xx�xy,

where .H, .xx, and �xy are measured as quantities in
3D. In good metals, .xx is very small at low temperatures,
and hence j�xyj is large although j.Hj is very small.
Therefore, it is possible that the quantized AHE is real-
ized even in the conventional metallic ferromagnets such
as Fe or Ni, when the thin film is fabricated. Actually,
when we virtually consider thin film of n-layer systems,
the 2D j�xyj at TC=2 is estimated as �0:59ne2=h for Fe
[22], �0:47ne2=h for Ni [22], and �0:20ne2=h for
SrRuO3 (from the first article in Ref. [8]). Therefore, the
condition j�xyj > 0:5e2=h is not so difficult to achieve in
the thin films of metallic ferromagnets. Extrapolating the
lnT behavior of �xx experimentally observed [20], the
crossover temperature Tcross from weak to strong local-
ization is estimated as Tcross � T0e

���0h=Ae2�, where T0 is a
206601-4
reference temperature of the order of 10 K, �0 is the
Drude conductivity at T0, and A is a sample-dependent
scaling exponent of the order of unity. Therefore, if the
minimal �0h=�Ae2� is less than �10, we have the chance
to observe the quantized AHE in the experimentally
realizable temperature. Considering that �xy have to be
larger than 0:5e2=h, this condition means that the ratio
�0=�xy should be smaller than �10.
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