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Rotating Superfluid Turbulence
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Almost all studies of vortex states in helium II have been concerned with either ordered vortex arrays
or disordered vortex tangles. This work numerically studies what happens in the presence of both
rotation (which induces order) and thermal counterflow (which induces disorder). We find a new
statistically steady state in which the vortex tangle is polarized along the rotational axis. Our results
are used to interpret an instability that was discovered experimentally by Swanson et al. [Phys. Rev.
Lett. 50, 190 (1983)] and the vortex state beyond the instability that has been unexplained until now.
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density L � Lrot was independent of the small values of
Vns and in agreement with Feynman’s rule, which was

cording to Helmholtz’s theorem, a superfluid vortex at a
point moves with velocity which depends on the shape of
Most configurations of quantized vortices [1] that have
been investigated in helium II can be grouped into
two types: ordered vortex arrays and disordered vortex
tangles. An ordered array is made when helium II is
rotated with angular velocity � exceeding a certain small
critical value. The resulting quantized vortices are
aligned along the rotation axis and form an array whose
areal number density is given by Feynman’s rule Lrot �
2�=�, where � � 9:97 � 10�4 cm2=sec is the quantum
of circulation. A spatially disordered tangle is obtained
[2,3] when helium is made turbulent under thermal coun-
terflow velocity Vns faster than some small critical value,
or, more in general [4], using grids [5] or propellers [6]. In
this work we concentrate on counterflow because this
form of turbulence is simpler (no need to worry about
large scale motion and effects induced by normal fluid
eddies). In turbulent counterflow the vortex line density
(length of vortex line per unit volume) is Lflow � �2

HV
2
ns,

where �H is a temperature-dependent coefficient [3]. This
vortex system is almost isotropic, provided that one ne-
glects a small anisotropy induced by the imposed coun-
terflow [7].

An important question naturally arises: What happens
if vortices are created by both rotation and counterflow
along the rotational axis? We are aware of only one
experiment which addressed this issue, which was per-
formed by Swanson, Barenghi, and Donnelly [8] years
ago. The counterflow channel was mounted on a rotating
cryostat, so it was possible to create vortices by indepen-
dent combination of rotation and counterflow. The abso-
lute value of the vortex line density L was determined
from the measurement of the attenuation of a second
sound along the channel, which was calibrated against
the known density in rotation [9]. Swanson et al. found
that at slow rotation the critical counterflow velocity
above which the flow became turbulent was greatly re-
duced. Furthermore, two critical velocities Vc1 and Vc2

were observed. For Vns < Vc1 the measured vortex line
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evidence for an ordered vortex array. The value of Vc1 was
consistent with the critical velocity of a vortex wave
instability which had been first observed by Cheng et al.
[10] and then explained by Glaberson et al. [11]. This
instability, hereafter referred to as the Donnelly-
Glaberson (DG) instability, takes the form of Kelvin
waves (helical displacements of the vortex cores), which
are destabilized by the component of the counterflow
velocity in the direction along the vortices.

Unfortunately, it was not clear to Swanson et al. [8]
what the nature of the flow was beyond the DG instability
(Vns > Vc1). Their experiment showed that rotation added
fewer than the expected 2�=� vortex lines to those made
by the counterflow. Lacking any direct flow visualization
the nature of the flow was a mystery. Theoretically, the
linear stability analysis of Glaberson determines only the
value Vc1 of the instability of the vortex array. What
happens beyond the instability can be studied only by
nonlinear analysis. Thus the pioneering experiment of
Swanson et al. has lacked a theoretical interpretation.

Motivated by their work, we study numerically quan-
tized vortices under both rotation and counterflow using
the vortex filament model. First we prepare an initial
vortex array in rotation; then we apply a counterflow
Vns along the rotational axis. We find that when Vns >
Vc1 Kelvin waves are excited and grow (DG instability),
and the vortex array becomes unstable. Then we show the
first numerical evidence for a polarized vortex tangle
(polarized superfluid turbulence).

Our work is relevant to other contexts of current inter-
est, such as superfluid 3He and atomic Bose-Einstein
condensates [12,13]. In general, our problem is concerned
with the competition between order (here induced by
rotation) and disorder (here induced by the heat flow).

For superfluid 4He, the vortex filament model is
very useful, because the vortex core radius a0 �
10�8 cm is microscopic and the circulation � � 9:97 �
10�4 cm2=sec is fixed. Neglecting the normal fluid, ac-
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the vortex and on the velocity field _ss0 at that point which
is induced by other vortices [14]. Therefore, in order to
study a rotating tangle, we need to formulate the laws of
vortex dynamics in a rotating frame [15].

The natural way to perform the calculation in a rotat-
ing frame would require one to consider a cylindrical
container.We do not follow this approach for two reasons.
First, our formulation is implemented using the full Biot-
Savart law, not the localized-induction approximation
often used in the literature. This would require one to
place image vortices beyond the solid boundary to impose
the condition of no flow across it. This has been done in
Cartesian (cubic) geometry, but it is difficult to do in
cylindrical geometry, Second, the original experiment
by Swanson et al. [8] was carried out in a rotating channel
with a square cross section.

In a rotating vessel the equation of motion of vortices is
modified by two effects. The first effect is the force acting
upon the vortex due to the rotation. According to
Helmholtz’s theorem, the generalized force acting upon
the vortex is balanced by the Magnus force as

�s��s0 � _ss0� �
F0

s
; (1)

where F0 � F�� �M is the free energy of a system in a
frame rotating around a fixed axis with angular velocity
� and angular momentum M. Taking the vector product
with s0, we obtain the velocity _ss0. The first term F due to
the kinetic energy of vortices gives that Biot-Savart law,
and the second term � �M leads to the velocity _ssrot of the
vortex caused by the rotation. The second effect is the
superflow induced by the rotating vessel. For a perfect
fluid we know the analytical solution of the velocity vcub

inside a cube of size D rotating with angular velocity
� � �ẑz [16]. By taking into account both effects, we
eventually obtain the velocity _ss0 in a rotating frame
which is

_ss0 �
�

4�
s0 � s00 ln

�
2�l	l��1=2

e1=4a0

�

	
�

4�

Z 0 �s1 � r� � ds1

js1 � rj3
	 _ssrot 	 vcub; (2)

where the first term on the right-hand side is the usual
desingularization of the Biot-Savart integral which is
well known in the literature. Here the vortex filament is
represented by the parametric form s � s��; t�. The sym-
bols l	 and l� are the lengths of the two adjacent line
elements after discretization, and the prime denotes dif-
ferentiation with respect to the arc length �. The second
term represents the nonlocal field by carrying out the
integral along the rest of the filament on which s1 refers
to a point.

At a finite temperature, a quantized vortex is also
affected by the mutual friction, as the vortex core is
dragged by the normal flow. Taking this effect into ac-
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count the velocity of a vortex line at the point s is given by

_ss � _ss0 	 �s0 � �vns � _ss0� � �0s0 � �s0 � �vns � _ss0��;

(3)

where � and �0 are the temperature-dependent friction
coefficients.

Two quantities are useful for characterizing the rotat-
ing tangle. The first is the vortex line density L �
�1=��

R
d�, where the integral is taken along all vortices

in the sample volume �. The second is the polarization of
the tangle, which we define by hs0zi � �1=��

R
d�s0��� � ẑz,

where ẑz is the unit vector along the z direction. Note that
hs0zi is unity for a vortex array and zero for a randomly
oriented tangle.

We now describe briefly how to perform the numerical
calculation [17]. A vortex filament is represented by a
single string of points at a distance �� apart. When two
vortices approach within ��, they are assumed to recon-
nect. The computational sample is taken to be a cube of
size D � 1:0 cm. We adopt periodic boundary conditions
along the rotating axis and rigid boundary conditions at
the side walls. All calculations are made under the
full Biot-Savart law, placing image vortices beyond the
solid boundaries. Our space resolution is �� �
1:83 � 10�2 cm and the time resolution is �t �
4:0 � 10�3 sec. The counterflow Vns is applied along
the z axis. The normal fluid is assumed to be at rest in
the rotating frame, and, to make comparison with the
experiment [8], we use � � 0:1 and �0 � 0 for the tem-
perature T � 1:6 K.

Swanson et al. [8] found that the first critical velocity
Vc1 is proportional to �1=2, in agreement with the DG
instability of Kelvin waves. Glaberson et al. [11] modeled
a vortex array rotating at angular velocity � as a con-
tinuum and found that, in the absence of the friction, the
angular velocity of the Kelvin wave of wave number k is
given by the dispersion relation ! � 2� 	 �k2, where
� � ��=4�� ln�b=a0� and b � L�1=2 is the average dis-
tance between vortices. This dispersion law has a critical
velocity VDG � �!=k�min � 2�2���1=2 at the critical
wave number kDG �

�������������
2�=�

p
. Therefore, if the axial

flow Vns exceeds VDG for some value of k, Kelvin waves
with that wave number k become unstable and grow
exponentially in time. Physically, the phase velocity of
the mode k is equal to the axial flow, so energy is fed into
the Kelvin wave by the flow.

Figure 1 illustrates the DG instability. The computation
was performed with angular velocity � � 9:97 �
10�3 rad=sec, for which VDG � 0:010 cm=sec. The vor-
tex lines remain stable when Vns � 0:008 cm=sec <VDG

[Fig. 1(a)], while at Vns � 0:015 cm=sec > VDG Kelvin
waves become unstable and grow [Fig. 1(b)], as predicted.
Figure 1(c) shows that Kelvin waves of a larger wave
number become unstable at higher counterflow velocity.
205301-2
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FIG. 3. Time evolution of L (a) and hs0zi (b) at T � 1:6 K and
Vns � 0:08 cm=sec for � � 4:98 � 10�2 rad=sec.

(a) (b) (c)

FIG. 1. Numerical simulations of the Donnelly-Glaberson
instability at � � 9:97 � 10�3 rad=sec, T � 1:6 K. Each
snapshot of the vortex configuration is for the counterflow
velocity Vns � 0:008 cm=sec (a), 0:015 cm=sec (b), and
0:05 cm=sec (c).
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This is the first numerical confirmation of the DG insta-
bility in a rotating vortex system.

The key question follows: What happens to the vortices
beyond the DG instability? Because of the computational
cost of the Biot-Savart law, it is not practically possible to
compute vortex tangles with densities which are as high
[L � O�104� cm�2] as those achieved in the experiment.
Nevertheless, the following numerical simulations can
shed light into the physical processes involved. The
time sequence contained in Fig. 2 illustrates the evolution
of a vortex array at � � 4:98 � 10�2 rad=sec under the
counterflow Vns � 0:08 cm=sec. Figure 2(a) shows the
initial N � 33 parallel vortex lines; they have been
seeded with small random perturbations to make the
simulation more realistic. As the evolution proceeds, per-
turbations with high wave numbers are damped by fric-
tion, whereas perturbations which are linearly DG
(a) (b)

(c) (d)

FIG. 2. Numerical simulation of rotating turbulence at T �
1:6 K, � � 4:98 � 10�2 rad=sec, and Vns � 0:08 cm=sec.
Computed vortex tangle at the following times: (a) t �
0 sec; (b) t � 12 sec; (c) t � 28 sec; (d) t � 160 sec.
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unstable grow exponentially; hence Kelvin waves become
visible [Fig. 2(b)]. When the amplitude of the Kelvin
waves becomes of the order of the average vortex sepa-
ration, reconnections take place [Fig. 2(c)]. The resulting
vortex loops disturb the initial vortex array, leading to an
apparently random vortex tangle [Fig. 2(d)]. After the
initial exponential growth (which is predicted by the
theory of the DG instability), nonlinear effects (vortex
interactions and vortex reconnections) become important
and nonlinear saturation takes place. The two effects are
apparent in Fig. 3(a), which shows the initial exponential
growth of L (linear instability) and the successive equili-
bration to a statistical steady state (nonlinear saturation).

Looking carefully at the saturated tangle in Fig. 2(d)
we notice that there are more loops oriented vertically
than horizontally. Figure 3(b) shows how the polarization
hs0zi changes with time in the calculation presented in
Fig. 2. During the exponential growth (linear phase)
hs0zi decreases from unity (ordered vortex array), but it
never becomes zero (random tangle), settling instead to
the finite value hs0zi � 0:5 as soon as nonlinear saturation
takes place at about t � 100 sec.
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FIG. 4. Vortex line density L vs V2
ns at T � 1:6 K for � � 0

(white circles), � � 9:97 � 10�3 rad=sec (black circles), � �
2:99 � 10�2 rad=sec (triangles), and � � 4:98 � 10�2 rad=sec
(squares).
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FIG. 5. Tangle’s polarization hs0zi vs V2
ns at T � 1:6 K for � �

9:97 � 10�3 rad=sec (circles), � � 2:99 � 10�2 rad=sec (tri-
angles), and � � 4:98 � 10�2 rad=sec (squares).

P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2003VOLUME 90, NUMBER 20
Figure 4 shows the calculated dependence of the vortex
line density L on the counterflow velocity Vns at different
rotation rates �. The dependence of L on Vns is similar to
what appears in Fig. 1 of the paper by Swanson et al. [8].
The only difference is that the scale of the axes in the
paper by Swanson et al. is bigger—in this particular
figure they report vortex line densities as high as L �
2500 cm�2, whereas our calculations are limited to L �
80 cm�2. Despite the lack of overlap between the experi-
mental and numerical ranges, there is clear qualitative
similarity between the figures. It is apparent that the
critical velocity beyond which L increases with Vns is
much reduced by the presence of rotation, which is con-
sistent with the experiment. Figure 5 shows the calculated
polarization hs0zi as a function of counterflow velocity Vns

at different rotation rates �. It is apparent that the polar-
ization decreases with the counterflow velocity and in-
creases with the rotation.

In conclusion, we have numerically studied vortex
tangles under the effect of rotation for the first time. At
velocities higher than the onset of the DG instability we
have determined the existence of a new state of superfluid
turbulence (polarized turbulence) that is characterized by
two statistically steady state properties, the vortex line
density and the degree of polarization. Although the
computed range of vortex line densities does not overlap
with the much higher values obtained in the experiments,
we find the same qualitative dependence of vortex line
density versus counterflow velocity at different rotations.

Further work will investigate other aspects of the
problem, particularly the nature of Vc2 and what happens
205301-4
at very high counterflow velocities. We also hope that this
work will stimulate more experiments. For example, it
should be possible to observe the polarization of turbu-
lence by using simultaneous measurements of second
sound attenuation along and across the rotation axis.
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