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Static Criteria for the Existence of Coulomb Strings in Storage Rings
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We derive four rigorous conditions for the stability of Coulomb strings in circular storage rings. These
criteria are well met by the existing data from experiments in SIS, ESR, and CRYring but not by the
NAP-M experiment. We calculate the potential of the joint transverse zigzag excitation and the
longitudinal motion against each other of a string of charged particles as a function of their amplitudes
and with the linear density as parameter. This potential exhibits a saddle point in amplitude space
which, if overcome, destroys the order of the string. The conditions of stability are derived from the
position and height of the saddle point which are fairly independent of the linear density. Our findings
confirm the supposition that only the Coulomb interaction in the immediate vicinity of very close
encounters of particles is important for the existence of strings.
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focusing plays only a minor role. Such linear ordering
has been verified in recent years. Schottky measurements

effect shows up. The only hitherto well established nec-
essary relation for the existence–but not the stability–of
Laser cooled singly charged ions in ion traps crystal-
lize at very low temperature. For recent developments in
this field, see [1]. During the time of their first experi-
mental observation [2] Schiffer and Kienle [3] suggested
looking for such Coulomb crystals in heavy ion beams as
well. This should be possible since the high charge of
fully stripped ions enhance the plasma parameter �, the
ratio between average mutual Coulomb energy and ther-
mal energy, substantially by orders of magnitude despite
the fact that the achievable temperature is much higher
with electron cooling. The infinitely long cylindrical
structures obtained in elaborate simulations with constant
radial focusing by Rahman and Schiffer [4] and lateron
[5] range from 1D linear strings over zigzags at low
density, over helices to 3D multishell cylinders at high
density. Such objects are called crystalline beams. By
virtue of their high luminosity they are of great experi-
mental interest. However, application of realistic alternate
gradient quadrupole focusing and, in particular, of dipole
bending forces in the simulations destroyed the eventual
crystalline structures. It was only Wei et al. [6] who then
worked out conditions for the lattice under which they
might survive. Machines with such lattices, however, do
not exist and 3D crystalline beams have not yet been gen-
erated in heavy ion accelerators or storage rings. Based on
these efforts, attempts have been made [7,8] to derive
stability conditions from the critical plasma parameter
� > 178 [9] where the 3D one component plasma (OCP)
crystallizes, resulting in order of magnitude estimates.

On the other hand, if one restricts itself to linear 1D
strings, the destructive bending forces cannot act and
simple 1D ordering is feasible. Such ordering is of liquid
type where only the two nearest neighbors interact, all
other particles being only spectators. Furthermore, since
the ions are only at most a few micrometers off the axis,
the difference between constant and alternate gradient
0031-9007=03=90(20)=204801(4)$20.00
of the momentum spread �p=p at beams of various
species of highly charged and extremely electron cooled
heavy ions at very low density in the storage ring ESR
[10] and in the synchroton SIS [11] of GSI have revealed
that below a certain threshold in density intrabeam scat-
tering ceases to act. Similar observations have been made
in the CRYring [12] of Stockholm. Also, the fluorescence
signal emitted from ordered strings of laser cooled singly
charged magnesium ions have been seen directly in the rf
quadrupole storage ring PALLAS at München [13]. The
beam radius below the critical threshold of stable strings
was determined with the help of a scraper to be smaller
than some micrometers, and the corresponding longitu-
dinal and transverse kinetic energies are estimated to be
of the order of some ten or hundred millielectronvolts,
respectively.

The typical drop from �p=p � 5� 10�6 by an order of
magnitude down to values close to 5� 10�7 at average
interparticle distances d of the order of centimeters has
been explained as the ions form a linear string where the
particles in the comoving frame of reference move
against each other but cannot pass any more [14]. Here
classical Monte Carlo trajectory calculations were per-
formed with charged particles heading towards each
other under constant focusing with the betatron fre-
quency !� of the respective ring and with the experimen-
tal longitudinal and transverse thermal energies. As
results, the probability of reflection (or transmission)
increases (drops) sharply when going to larger average
interparticle distances. Recently, even more elaborate
calculations with the full lattice of the circular accelera-
tors were performed by Okamoto and co-workers [15],
yielding similar results.

As this model can explain the given experimental data,
it cannot yet predict the linear density � and longitudinal,
Tjj, and transverse, T?, thermal energies at which this
 2003 The American Physical Society 204801-1
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Coulomb strings is

d > 1:4aWS; (1)

where d is the average interparticle distance along the
beam direction. It stems from the transition density where
at zero temperature a string ceases to be stable and turns
into a zigzag configuration at � < 0:709, where � �
aWS=d is the linear density introduced in Ref. [5] and
aWS is the Wigner-Seitz radius

aWS �
�
3q2

2M!2
�

�
1=3

; (2)

with q � Ze being the charge, Z the charge number, M
the mass of the ions, and 4��0 � 1 for convenience. It
is the purpose of this Letter to derive rigorous criteria for
the thermal energies under which the Coulomb strings are
stable, not based on the 3D OCP but on the excitations of
strings.
FIG. 1 (color online). Potential energy Eq. (4) of the collec-
tive zigzag excitation. The numbers in boxes label the contour
lines in units of q2=aWS. The ground states are indicated by the
light dots and the saddle point is marked by a cross. Note the
different units in the longitudinal and transverse directions.
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Suppose that at rest the ions are distributed equidis-
tantly along the z axis, zj � jd, (j � �1; . . .� 1; 0;
1; . . . ;1) with radii rj � 0. This string can vibrate in
different cosinelike (even parity � � �) or sinelike
(odd parity � � �) modes M� longitudinally as well
as transversely [16],

zj � jd� ud
�
cos
sin

�
	jq
; rj � �d

�
cos
sin

�
	jq
;

for � �

�
�

�

�
:

(3)

Here q is the wave number related to the mode number by
M � 2�=q. In general, the longitudinal and transverse
modes are decoupled. Since higher modes have higher
energies and since we are only interested in the lowest
possible excitations, we restrict ourselves to the lowest 2�

mode in the longitudinal direction, which is the zigzag
mode. In this case the dimensionless potential energy per
particle in units of q2=d reads
�	�; �
 �
3�2

4�3
�
1

2

X1
j�1;3;:::

f�j2 � 4	�2 � �2 � 4�j

�1=2 � �j2 � 4	�2 � �2 � 4�j

�1=2 � 2=jg; (4)
where � � u=d and � � r=d. The first term of Eq. (4) is
just the harmonic radial confining potential. A contour
plot of this potential for the example � � 0:25 is shown
in Fig. 1. Here the lower left-hand corner and, by perio-
dicity, also the lower right-hand corner correspond to the
string being at rest. Upwards, the system needs energy to
work against the radial harmonic confining potential.
Going to the right (or left) from the outer corners means
that the ions approach each other with u � d=2 being at
closest contact. There, without radial excursion (r � 0)
the potential exhibits an infinitely high mountain. For an
intermediate radial amplitude, however, the potential has
a saddle point at u � d=2 which can be overcome if the
longitudinal kinetic energy is sufficiently high.

The location and height of this saddle point is shown in
Fig. 2 as a function of the linear density. Note that the
saddle point of the zigzag mode vanishes by definition at
the critical � � 0:709 where the ground state string turns
into a zigzag. It can be seen that the radial position in
units of aWS is almost constant in a wide range of small
densities. The same applies to its height in units of
FIG. 2 (color online). Saddle point radius in units of aWS
(solid line) and saddle point energy in units of q2=aWS (dashed
line) on the same scale.
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FIG. 3 (color online). Contour plot of the reflection probabil-
ity versus kinetic energies in units of q2=d (after Ref. [14]). The
dot indicates the result of the criteria (5) and (6).
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q2=aWS. As a result we derive the following conditions for
the stability of Coulomb strings in circular rings:

r & 0:6aWS or T? & 0:25q2=aWS; (5)

Tjj & 0:7q2=aWS: (6)

Hereby the second part of Eq. (5) obtains from T? �
M!2

�r
2=2 without taking into account fine details such

as the difference between maximum and rms radius.
The longitudinal kinetic energy can be converted to
momentum spread with the help of the relation Tjj �
M	�c�p=p
2=	8=ln2
 [10], where �c is the beam veloc-
ity. Note that the relations (5) and (6) contain as measures
of distance just the Wigner-Seitz radius, a combination of
beam properties, and not the interparticle distance or the
beam density. This reflects the fact that most of the time
the ions do not interact notably. Only if they come close
TABLE I. Experimental data, momentum spread �p=p, average
q2=aWS, linear density �, longitudinal and transverse temperatures

Ring Ion �p=p �10�6
 d [cm] aWS ��m
 q2=aWS

ESR 12C6� 2 0.17 7.7 6.
ESR 20Ne10� 2 0.25 9.1 16
ESR 40Ar18� 4 4 8.9 52
ESR 48Ti22� 2:5 0.44 11.5 61
ESR 58Ni28� 4 8 13.6 83
ESR 86Kr36� 4 6 13.3 140
ESR 132Xe54� 6 10 15.0 280
ESR 197Au79� 6 2 14.0 640
ESR 238U92� 5 10 14.6 830

ESR p 1 0.2 9.1 0.
SIS 86Kr36� 15 2 50 37
CRYring 64Ni17� 5 1 19.8 21
PALLAS 24Mg� � 40 20 �m 7.8 0:18 �
NAP-M p ?1 2 �m 8.0 0.
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within a distance of the order of aWS they feel the repul-
sive Coulomb potential.

Another relation is derived from the stiffness of the po-
tential of Fig. 1 at the ground state 	r � 0; u � 0
 marked
by the light dot in the direction of the saddle point.
Equating the saddle height 0:7q2=aWS to M!2

jj
r2saddle=2,

one obtains the Coulomb period �jj � 2�=!jj. Thus the
ratio of Coulomb period to betatron period must be

�jj=�� * ��1; (7)

reflecting the fact that the period of an average Coulomb
scattering must be large as compared to a single betatron
period. This condition is well fulfilled for the experi-
ments listed below.

As a comparison with the results derived from the
molecular dynamics calculations of Ref. [14] is shown
in Fig. 3 at the typical linear density � � 0:000 15. Here
the contour lines label the reflection probability which
rises sharply from 0 to 100% as crossing the threshold.
The resulting point from the criteria (5) and (6) is in-
dicated by the big dot, right in the center. Another com-
parison is supplied by Table I where all data of existing
experiments are listed. Here 0:7q2=aWS is of the same
order of magnitude as Tjj. However, the experimentally
determined rms radii or the transverse kinetic energies,
are larger by factors of 2 to 5. A newer analysis of the
U92� machine experiment in the ESR [17] gave a hori-
zontal radius of as small as 5 �m, which is even smaller
than our criterion. Note also that the potential energy
landscape of Fig. 1 is very flat above and below the saddle
point and that the reflection probability of Fig. 3 goes
from 0 to 100% within 2 orders of magnitude in T?, thus
leaving enough room for much larger radii and kinetic
energies. The large particle density of the NAP-M proton
experiment at Novosibirsk of 1976 [18] clearly violates
the first criterion (1), and the very short Coulomb period
particle distance d, Wigner-Seitz radius aWS, unit of energy
Tjj, T?, rms radius rrms and scattering ratio (after Ref. [14]).

[meV] � Tjj [meV] T? [meV] rrms ��m
 �jj=��

7 0.0046 1.5 90 30 450
0.0036 10 150 30 700
0.000 20 19 300 21 8500
0.0026 9 370 30 950
0.00016 26 440 33 1300
0.00022 39 640 30 8000
0.00015 120 1000 30 10 000
0.000 70 290 1500 21 2200
0.00015 240 1800 21 13 000

16 0.0045 0.01 7.5 70 1000
0.000 25 40 100 60 2000
0.0019 2.3 � � � � � � 1000

eV 0.39 0:26 �eV � 30 2 100
18 4.2 ?0.01 ?25 150 0.6
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violates the fourth criterion, thus indicating that order
could not have been reached.

In summary, we have stated four criteria for the stabil-
ity of Coulomb strings in circular machines by employing
the collective properties of charged strings. No reference
was necessary to the properties of the three-dimensional
one component plasma. The simple estimates agree well
with the results from the more elaborate calculations of
the reflection probabilities. Although the criteria give
rigorous upper limits for the kinetic energies (or tempera-
tures) it cannot predict the critical densities where the
strings start or cease to exist. This, in turn, is determined
by the dynamical process of the cooling force counter-
acting intrabeam scattering which is out of scope of our
static model but is subject of work under way.

The idea of this work originated after a seminar at GSI
of Dieter Möhl who reported on calculations of the lumi-
nosity of an electron-ion collider with an ordered ion
beam at RIKEN [7]. The author thanks him for fruitful
discussions.
2048
*Electronic address: r.hasse@gsi.de
[1] Proceedings of the Workshop on Trapped Charged Par-

ticles and Fundamental Interactions, Wildbad Kreuth,
Germany, 2002 [J. Phys. B 36, 3 ( 2003); 36, 5 (2003)].

[2] F. Diedrich et al., Phys. Rev. Lett. 59, 2931 (1987); D. J.
Wineland et al., Phys. Rev. Lett. 59, 2953 (1987).

[3] J. P. Schiffer and P. Kienle, Z. Phys. A 321, 181 (1985).
[4] A. Rahman and J. P. Schiffer, Phys. Rev. Lett. 57, 1133

(1987).
[5] R.W. Hasse and J. P. Schiffer, Ann. Phys. (N.Y.) 203, 419

(1990).
01-4
[6] J. Wei, X.-P. Li, and A. M. Sessler, Phys. Rev. Lett. 73,
3089 (1994); J. Wei, H. Okamoto, and A. M. Sessler, Phys.
Rev. Lett. 80, 2606 (1998).
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