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Breakdown of Diffusion in Dynamics of Extended Waves in Mesoscopic Media

A. A. Chabanov,' Z. Q. Zhang,? and A. Z. Genack'

'Department of Physics, Queens College of the City University of New York, Flushing, New York 11367, USA
“Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
(Received 28 November 2002; revised manuscript received 31 December 2002; published 22 May 2003)

We report the observation of nonexponential decay of pulsed microwave transmission through quasi-
one-dimensional random dielectric media signaling the breakdown of the diffusion model. The decay
rate of transmission falls nearly linearly in time corresponding to a nearly Gaussian distribution of the
coupling strengths of quasinormal electromagnetic modes to free space at the sample surfaces. The peak
and width of this distribution scale as L™>% and L™!8!, respectively.
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The diffusion model is widely applied to electronic,
neutron, and thermal conduction as well as to acoustic and
electromagnetic propagation in multiply scattering me-
dia. The model is used not only when the phase of the
wave is scrambled by inelastic scattering, but also in
samples in which the wave is temporally coherent [1,2].
Since these samples are larger than the mean free path but
smaller than the inelastic scattering length, we refer to
them as mesoscopic. Although wave interference leads to
large intensity fluctuations within a particular meso-
scopic sample, the ensemble average of the flux reaching
a point is generally assumed to be the incoherent sum of
contributions of randomly phased, sinuating Feynman
paths reaching that point. In this model, the average
intensity varies smoothly in space and time and is gov-
erned by the diffusion equation.

Diffusion has been taken as the counterpoint to wave
localization [3—5]. On one side are sharply defined local-
ized modes with the average level spacing Av exceeding
the typical level width 6v, and on the other are diffusing
waves for which 8v > Av with v ~ D/L?, where D is
the diffusion coefficient and L is the sample thickness [5].
However, the mode picture is inescapably a wave picture
and at variance with particle diffusion in a number of
respects. First, the diffusion equation is of first order,
whereas the wave equation is of second order in time.
The time evolution of the wave at any instant should
therefore depend not only upon the spatial distribution
of the particle density or intensity at that instant, as it
does in the particle diffusion picture, but also on the
previous history of the wave. Second, the particle picture
represents the intensity as a discrete sum over diffusion
modes, whereas the wave picture describes the field as a
superposition of quasinormal modes with a continuum of
decay rates in a random ensemble. The decay rates of the
diffusion modes are given by 1/7, = n?>m*D/(L + 2z,)?,
where n is a positive integer and z, is the boundary
extrapolation length. After a time 7, the intensity dis-
tribution settles into the lowest diffusion mode and de-
cays at a constant rate, 1/7;. In contrast, the decay rates
of quasinormal modes in a random ensemble should be a
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continuum. As time progresses, long-lived quasimodes
would contribute more substantially and the rate of flow
out of the sample would slow down continuously. Non-
exponential decay has been observed in acoustic scatter-
ing in reverberant rooms [6] and solid blocks [7] as well
as in microwave scattering in cavities whose underlying
ray dynamics is chaotic [8]. Similarly, the decay rate of
electronic conductance has been predicted to fall as a
result of the increasing weight of long-lived, narrow-
linewidth states [9]. The leading correction to the diffu-
sion prediction for the electron survival probability P,(z)
was calculated by Mirlin [10] using the supersymmetry
approach [11] to be —InP,(t) = (t/7))(1 — t/27*gT)),
where g is the dimensionless conductance [5], g =
Sv/Av.

An ideal way to investigate the applicability of the
diffusion model to mesoscopic systems is to consider
pulsed electromagnetic transmission. Previous studies
[12-15] have found exponential decay for > 7, as
predicted by diffusion theory. However, measurements
of optical transmission [14] indicate that the pulse rises
earlier than predicted by diffusion theory. Even more
puzzling is the finding by Kop et al. [15] of an increase
in the inferred value of the diffusion coefficient with
increasing L.

In this Letter, we report a dramatic breakdown of
diffusion in microwave measurements in nominally dif-
fusive random samples for which v > Aw. We find that
the decay rate of pulsed transmission falls nearly linearly
in time, as predicted by Mirlin [10]. These results are
interpreted in terms of the distribution of decay rates of
quasimodes of the sample, which is found by taking the
inverse Laplace transform of the decaying signal. The
distribution of the modal decay rates is nearly Gaussian
with an average value that scales as L ™%, which is close
to the inverse square scaling for the decay rate in the
diffusion model. The width falls as L~ 18! which is faster
than predicted by Ref. [10].

Spectra of the in- and out-of-phase components of the
steady-state transmitted microwave field are measured in
low-density collections of dielectric spheres using a
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Hewlett-Packard 8772C vector network analyzer. These
spectra are multiplied by a Gaussian envelope of width
Af centered at f. and then Fourier transformed to give
the response to a Gaussian pulse in the time domain.
Conical horns are positioned 30 cm in front of and behind
the sample. Linearly polarized microwave radiation is
launched from one horn, and the cross-polarized com-
ponent of the transmitted field is detected with the other
to eliminate the ballistic component of radiation. The
sample is composed of alumina spheres of diameter
0.95 cm and refractive index 3.14, contained within a
7.3-cm-diameter copper tube at an alumina volume frac-
tion of 0.068 [16]. This low density is produced by embed-
ding the alumina spheres within Styrofoam spheres of
diameter 1.9 cm and refractive index 1.04. Measurements
for random ensembles are obtained by momentarily ro-
tating the tube about its axis to create new random con-
figurations before each spectrum is taken. In this way,
measurements are carried out in ensembles of 10000
sample realizations at lengths of 61, 90, and 183 cm in
samples A, B, and C, respectively. In addition, measure-
ments are made in an ensemble of 2300 realizations of a
more strongly absorbing sample of 90 cm length
(sample D), produced by covering 40% of the inside
surface of the tube with a strip of titanium foil laid
from end to end. The measurements are made within the
frequency interval 14.7-15.7 GHz for samples A, B, and
D, and 15.0-15.4 GHz for sample C. The frequency
intervals are chosen to be far from sphere resonances
[16], so that the dynamics of transmission is uniform
over the frequency range and the sample is far from the
localization threshold. The closeness to localization, even
in the presence of absorption, is indicated by the variance
of the steady-state transmitted intensity normalized to its
ensemble average value, var(//{I)) [17]. In the absence of
absorption, var(I/{I)) =1+ 4/3g [17,18]. At the local-
ization threshold, var(I/{I))~7/3. The values of
var(I/{I)) in samples A-D are 1.18, 1.26, 1.50, and 1.25,
respectively.

The field of the temporal response to a Gaussian pulse
peaked at ¢+ = 0 is squared to give the transmitted inten-
sity I(¢) for each sample realization. The average trans-
mitted intensity /(7)) is found by averaging over the
ensemble, and then over the frequency interval by shift-
ing f.. The results are shown on a logarithmic scale in
Fig. 1(a). We find that, when Af > 8w, the tail of (I(¢))
does not depend on Af. We use Af =15 MHz for
samples A, B, and D, and Af = 7.5 MHz for sample C,
so that Af > v in all cases. The noise in the frequency
spectra produces a constant background in the time do-
main. Once this background is subtracted, a dynamic
range of more than 6 orders of magnitude is achieved.
This makes it possible to study transmission on time
scales an order of magnitude longer than the time of
peak transmission, though the longest times are still
smaller than the inverse level spacing, 1/Av, which gives
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FIG. 1 (color online). (a) Average transmitted intensity in
samples A-D. (b) Temporal derivative of the logarithm of the
intensity gives the rate y of the intensity decay due to leakage
out of the sample and absorption. The thin black curves are the
decay rates of the diffusion model with D*, zy, and 7, of Table L

the time required for a photon to visit each coherence
volume of the sample. The measured decay rate due to
leakage out of the sample and absorption, y =
—dIn{I(t))/dt, is plotted in Fig. 1(b). This rate is not
constant as predicted by diffusion theory, but falls nearly
linearly with time. The constant increase in the decay rate
for sample D over that for sample B, seen in Fig. 1(b),
indicates that the absorption rate 1/7, and the leak-
age rate are additive. The decrease in y with time is
thus attributable solely to propagation out of the
sample, which proceeds at a rate, y — 1/7, = 7>D(1)/
(L + 2z4)?. The absorption rate is found from a fit of the
diffusion model [12—-14] to measurements of {I(¢)) up to
the time at which 95% of the transmitted energy has
passed through (Fig. 2). The fit is obtained by taking
D(r) to be a constant, D*, and by minimizing the pa-
rameter x> = (o)~ S[I(2)); — I(t;)]?, where (I(1)); are
the values of the measured intensity, o is the uncertainty
in (I(2));, averaged over the time of the fit, and I(z;) are the
values of the model intensity [14] calculated at ¢;. The
parameters D*, 7,, and z, obtained from the fit are listed
in Table I, and the corresponding decay rates are shown
by the thin solid lines in Fig. 1(b). For sample A, x? at the
minimum depends only weakly on 7, since the temporal
range used in the fit is smaller than the 7,. For this reason,
we use the value 7, = 97 ns for this length, which is
obtained in the fit to the data for sample C.

203903-2



week ending
VOLUME 90, NUMBER 20 PHYSICAL REVIEW LETTERS 23 MAY 2003
1 0.06 ; .
B __oost @ ]
Lz "_g/ 0.04 ]
L= & 003 -
- E = 002 ]
L o L I
£ 0.01 C ]
A -
- 0.00 I
= 600 800
777777 Y
Tin AD\ : Lo
B C -100 o 100 200 300 400
t (ns)

FIG. 2 (color online). Fit of the diffusion model to 95% of
the full transmitted energy (circles) in samples A—D. The solid
curves show the fit. [;, is the incident pulse of Af = 15 MHz
used to obtain A, B, and D; a pulse of Af = 7.5 MHz was used
to obtain D. All the curves are normalized.

The diffusion coefficient D* obtained from the fit is
found to decrease slightly with increasing L. The equality
of the values of D* and z, for samples B and D, seen in
Table I, indicates that these parameters are not sensitive
to the absorption rate. Moreover, when 1/7, is subtracted
from 7y to give the decay rates without absorption in
Fig. 3(a), the same time-dependent decay is found for
both samples of 90 cm length.

The leakage rates in Fig. 3(a) give the ““‘time-dependent
diffusion coefficient,” D(t) = (y — 1/7,)(L + 2z,)*/ 7.
The values of D(¢) found from the measurements may be
compared to those from the theory of Ref. [10] for the
survival probability, which yields D(r) = D(1 — ¢t/
m?gT, + ...). This is done by plotting D(¢) as a function
of the dimensionless time ¢/ = t/g7; in Fig. 3(b). The
time g7, is proportional to 1/Aw, and all the data are
predicted to fall on a single curve. Although the data for
samples with different values of L at a given time appear
to coincide within the noise, there is a discernible de-
crease in the slope of D(¢') as L increases. As a result, the
curves do not extrapolate to a constant bare diffusion
coefficient at + = 0. When D(7) is plotted instead versus
the dimensionless time ¢/ = 7/, /g7, in Fig. 3(c), the slope

TABLE L. Values of the diffusion coefficient D*, absorption
time 7,, and extrapolation length z; in samples A-D, obtained
by fitting Eq. (1) of [14] to the short-time transmitted intensity
of Fig. 2.

L D* T 20

Sample (cm) (cm?/ns) (ns) (cm)
A 61 39.4 0.3 [97] 9.6 £0.3
B 90 379 0.3 104 =7 9.8 +0.6
C 183 37.0 0.8 97 £4 12.1 £2.5
D 90 37.4 £ 0.4 46 =2 8.7+0.8
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FIG. 3 (color online). (a) Leakage rates in samples A—D. The
black curves are the best fit to the data by a polynomial of
power 2. (b) “Time-dependent diffusion coefficients,” D(r) =
(y = 1/7, )L + 2z)?/m?, plotted versus t' = t/g7,. (c) D(t)
plotted versus 1" =t/ /gT,.

of D(#"") appears to be the same for all values of L;
however, the curves do not overlap. A strong deviation

from exponential decay at #/ = 1 has also been found in
numerical simulations [19].

The changing slope of D(¢) with L is associated with
the scaling of the width of the distribution P(«) of decay
rates of quasinormal modes of the sample. These are
hypothesized to form a complete set [20], even when
dv > Aw. Since the time evolution is given by the super-
position of these modes [20], the average transmission can
be expressed [7] as (I(2)) = [§ P(a)exp(—at)da. To find
P(a), we use an approximate Laplace inversion algorithm
based on the Weeks method [21]. A polynomial of power 2
is fit to the decay rates in Fig. 3(a). These fits are then used
to compute curves (I(r)), which are inverted to obtain the
distributions P(«) shown in Fig. 4. A linear decrease in
v(t) with time as y(t) = a — bt, b/a < 1, would corre-
spond to a Gaussian distribution for P(a) with {(a) = a
and var(a) = 02 = b. A departure of P(a) from a
Gaussian form in Fig. 4 reflects a somewhat more rapid
decay of y(z) in Fig. 3.
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FIG. 4 (color online). Distribution of the modal decay rates,
P(a), in samples A—C. Inset: scaling of the average () (circles)
and of the width o, (squares) of P(«), and the corresponding
best fits to ~(L + 2z¢)? (solid) are shown on the log-log scale.
The best fits are obtained with exponents of —2.05 and —1.81
for (@) and o, respectively.

The scaling of the average decay rate due to
leakage out of the sample, shown in Fig. 4, is given by
(a) o (L + 2z¢)~>%. This is close to the inverse square
scaling of the diffusion model and suggests that the
dynamics observed is characteristic of extended waves
and is not associated with the approach to localization
with increasing L. The width of the distribution scales as
o, % (L + 2z,)" 81, This is close to the scaling, o,
Vb = 1/g" 47, = L=175 and differs from the scaling pre-
dicted by Ref. [10], o, o /b o« 1/ Jgr; o« L7175,

The wide distribution of the modal decay rates in thin
samples may be the source of the sharp spectral peaks
observed in amplifying random media [22,23]. In these
samples, lasing is initiated in the longest-lived modes,
which have the lowest critical gain [24]. Such long-lived
modes are expected to exhibit a sharply peaked spatial
distribution.

In conclusion, we have found nonexponential decay of
pulsed transmission through disordered media in which
the level width exceeds the spacing between levels, even at
long times and in thick samples. This departure from
diffusion theory is interpreted in terms of the decay
rate statistics of electromagnetic quasinormal modes.
The statistics of these modes is fundamental to under-
standing the static and dynamic behavior of waves in both
passive and active random media.
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