
P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2003VOLUME 90, NUMBER 20
Traversable Wormholes with Arbitrarily Small Energy Condition Violations
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Traversable wormholes necessarily require violations of the averaged null energy condition, this
being the definition of ‘‘exotic matter.’’ However, the theorems which guarantee the energy condition
violation are remarkably silent when it comes to making quantitative statements regarding the ‘‘total
amount’’ of energy condition violating matter in the spacetime. We develop a suitable measure for
quantifying this notion and demonstrate the existence of spacetime geometries containing traversable
wormholes that are supported by arbitrarily small quantities of exotic matter.
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m1 � m0 �
max f0;2m0g

4�r2��r�dr: (1) Constructing the wormhole.—Consider a static spheri-
cally symmetric spacetime and go to Schwarzschild
Introduction.—We know that traversable wormholes
require ‘‘exotic matter,’’ that is, violations of the averaged
null energy condition [ANEC] [1–4]. But, do we need
‘‘large’’ amounts of ANEC-violating matter or are
‘‘small’’ amounts sufficient to do the job? This question
is particularly interesting in view of the fact that quantum
effects are known to induce some energy condition vio-
lations [5]. Furthermore numerical evidence suggests that
quantum effects may be sufficient to support a wormhole
throat [6]. On the other hand, there are significant limi-
tations (the Ford-Roman ‘‘quantum inequalities’’
and their variants) on the ‘‘size’’ and ‘‘distribution’’ of
quantum-induced energy condition violations [7].

To set the stage, consider the four great results of global
analysis in classical general relativity—the area-
increase, positive mass, singularity, and topological cen-
sorship theorems. Some of these classical results seem to
survive the introduction of quantum physics, while others
do not.

In the case of the area-increase theorem (see, e.g., [8])
we know that quantum effects, though extremely tiny,
violate the ANEC (and other energy conditions) and are a
necessary precondition for Hawking radiation [9]. The
effect though tiny is secular, so it accumulates and com-
pletely reverses the conclusion of the classical area-
increase theorem once quantum effects are brought into
account.

In contrast, for the positive mass theorem [10] the
situation is rather different. For a finite spherically sym-
metric static distribution we know (using curvature coor-
dinates) that
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So if the asymptotic mass is to be large and negative, then
similarly either the central ‘‘bare’’ mass m0 or the inte-
grated density must be large and negative. You cannot get
large negative asymptotic mass from infinitesimal weak
energy condition (WEC) violations.

The situation with respect to the singularity theorems
(see, e.g., [8]) is intermediate. The various ways currently
known of violating the energy conditions [11] lead to
‘‘technical’’ violation of the singularity theorems—the
hypotheses of the singularity theorems (as currently for-
mulated) are not satisfied by empirical reality. Whether
it is possible to avoid singularities armed only with
arbitrarily small quantities of ANEC-violating matter is
not presently known.

With regard to topological censorship, the key question
is this: Is the existence of traversable wormholes more
akin to the situation with the area-increase theorem (in-
finitesimal ANEC violations reverse the conclusion of the
theorem) or is it more akin to the situation with regard to
positive mass (large WEC violations needed for a large
negative mass)? We shall answer this question by explicit
example; we work with static spherically symmetric
spacetimes and develop a suitable quantitative measure
of the total amount of exotic matter. We then display a
particular class of spacetime geometries that contain a
traversable wormhole (and thereby violate topological
censorship), but which are supported by arbitrarily small
quantities of exotic matter.

We conclude that the topological censorship theorem is
more akin to the area-increase theorem than to the posi-
tive mass theorem—small violations of the energy con-
ditions are sufficient to evade the conclusions of the
theorem.
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coordinates (curvature coordinates) [1,4]:

ds2 ��exp	2
�r�
dt2 �
dr2

1� b�r�=r

� r2�d2 � sin2d’2�: (2)

Then, using the Einstein field equations, the components
of the diagonal energy-momentum tensor in an orthonor-
mal basis turn out to be (units: G � c � 1) [1,4]
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where �, pr, and pt are the energy density, the radial, and
tangential pressures, respectively. If the equation b�r� � r
has a nontrivial solution r0 and exp	
�r0�
 � 0, then we
can cut the spacetime at r � r0 and paste it onto a second
copy of itself, with a C2 geometry at r � r0. The extrinsic
curvature of the hypersurface r � r0 (� is the proper
radial distance) is
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1� b�r�=r

p
! 0: (5)

As long as exp	
�r0�
 � 0 you can go to an orthonormal
basis and have Kâa b̂b � 0. (Hatted indices denote compo-
nents in an orthonormal basis.) The junction condition
formalism [12] now guarantees the geometry is C2 across
the gluing hypersurface. (Under normal conditions the
junction formalism yields a C1 geometry; it is the vanish-
ing of the extrinsic curvature at the junction that in this
case makes the geometry C2.)

The ANEC integral along a radial null geodesic is

I �
I
	�� pr
 exp	�2

d� �

I
	�� pr
 exp	�

d�:

(6)

An integration by parts yields [4]
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dr < 0: (7)

Unfortunately this is a line integral, with dimensions
(mass)=(area), not a volume integral, and so gives no
useful information regarding the total amount of energy
condition violating matter.

The basic volume-integral theorem relates the asymp-
totic mass to the throat radius r0 and the density by

m1 �
r0
2
�

Z 1

r0

4�r2��r�dr: (8)

This is a simple generalization of the ordinary mass
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formula for relativistic stars to traversable wormholes
[13]. Now

Z
dV �

Z
4�r2dr;

I
dV � 2

Z 1

r0

4�r2dr (9)

is a very natural integration measure in Schwarzschild
coordinates. This is the measure that appears in the sim-
plest formula for the total mass. Indeed, including both
asymptotic regions, we have

I
�dV � 2m1 � r0: (10)

We now develop our key volume-integral result, using
this same ‘‘r2dr’’ measure. It is easy to check that
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Then integrating by parts
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The boundary term at r0 vanishes by our construction of
the wormhole. The boundary term at infinity vanishes
because of the assumed asymptotic behavior. Then
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ln
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1� b=r

��
dr: (13)

This volume-integral theorem provides information about
the total amount of ANEC-violating matter in the space-
time [14]. For the transverse pressure we have

pt � pr �
r
2
fp0

r � ��� pr�
0g; (14)

but in the general case this does not lead to a particularly
useful volume integral. We emphasise that it is pr that is
guaranteed to be associated with ANEC violations,
whereas inequalities associated with pt generically rep-
resent ‘‘normal’’ matter.

Specialization 1: spatial Schwarzschild.—Now con-
sider the special case where the spatial metric is exactly
Schwarzschild; that is b�r� ! 2m � r0. Then � � 0
throughout the spacetime and we get the very simple
result

I
prdV � �

Z 1

r0

ln

�
exp	2



1� 2m=r

�
dr: (15)

Thus the total ANEC-violating component of the stress
energy is finite and bounded. Suppose, in particular, that
we have a wormhole whose field only deviates from
Schwarzschild in the region from the throat out to radius
a. Then we can further simplify the above to
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Under this same restriction the ANEC integral satisfies
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and so is strictly bounded away from zero. Now
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Evaluating this last integral

I
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This is useful because it is an explicit lower bound on the
total amount of radial stress in terms of 
max and the size
of the region of ANEC-violating matter. Similarly

I
prdV <��a� 2m� ln

�
exp	2
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:

(20)

This is now an upper bound in terms of 
min and the size
of the region of ANEC-violating matter. If we now
choose geometries such that 
max and 
min are not
excessively divergent [no worse than �a� 2m��� with
� < 1], we can take the limit a ! 2m to obtain

I
prdV ! 0: (21)

That is, by considering a sequence of traversable worm-
holes with suitably chosen a and 
�r� [and b�r� � 2m] we
can construct traversable wormholes with arbitrarily
small quantities of ANEC-violating matter. (With the
ANEC line integral nevertheless remaining finite and
negative.) Since this result is rather important, we now
provide an even more explicit example.

Specialization 2: piecewise R � 0 wormhole.—We
now consider a segment of R � 0 wormhole (zero Ricci
scalar) [15] truncated and embedded in a Schwarzschild
geometry. For r 2 �r0 � 2m; a� take

exp	
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so that
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1� 2m=a
p : (25)

There is ANEC-violating matter confined to the region
	r0; a� and a thin shell of quasinormal matter at r � a
[16]. (Quasinormal meaning it is not ANEC violating, or
for that matter violating other energy conditions, namely,
the weak energy condition or the strong energy condition.
It does however violate the dominant energy condition;
see [4] for details on the different energy conditions.)

Computing the extrinsic curvature at r � a > 2m:
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Then the only nontrivial component is
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The only nonzero component of the discontinuity is
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In an orthonormal frame
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Since the extrinsic curvature is nonzero, the junc-
tion condition formalism implies that the metric is C1 at
r � a. The only component of stress energy that picks up
a delta-function contribution is pt. That is

pr � �
1

8�
2m 

r3� � �
���������������������
1� 2m=r

p
�
��a� r�; (31)

pt �
1

8�
m 

r3� � �
���������������������
1� 2m=r

p
�
��a� r�

�
1

8�
 2m=a2

1� 2m=a
���� �a�: (32)

Note that at the throat (r � 2m)
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both of which are finite for all a and  .
The volume integral is
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which evaluates (after a little work) to
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Here we have introduced
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Once
H
prdV is known,

H
ptdV is trivial. It is easiest to

consider
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The point is that
H
prdV can be made arbitrarily small by

suitably choosing  and a. For example, take  = s fixed,
and let  ! 0. Now in that case

H
	pr � 2pt
dV remains

finite, but you could just as easily choose  s �
���
 

p
! 0, or

even  s fixed and  ! 0, in which case both integrals tend
to zero. Thus the volume integrals of both pr and pt can
be made arbitrarily small while the volume integral of �
is identically zero by construction. In this particular
example the geometry is sufficiently simple that an in-
tegration in terms of the proper volume

�����
g3

p
d3x can also

be explicitly carried out. Qualitatively similar results are
obtained.

We emphasize that the particular details of the geome-
try we have written down are no where near as important
as the general principle that energy condition violations
can be made arbitrarily small.

Conclusions.—The specific examples presented in
this Letter make essential use of spherical symmetry,
and it is not yet clear to us how to usefully extend these
ideas to more general situations—that is however not
critical to the central point of this Letter; any explicit
example of a traversable wormhole with infinitesimal
ANEC violations will serve to illustrate the point we
wish to make.

Let us now summarize the key result: ANEC vio-
lations are certainly needed to support traversable worm-
holes, but by appropriate choice of the wormhole ge-
ometry the total quantity of ANEC-violating matter can
be made infinitesimally small. Quantum physics is
known to lead to small violations of the ANEC, and
indeed quantum-induced ANEC violations are known
to be an essential precondition for the violation of
the area-increase theorem engendered by the existence
of Hawking radiation. Thus topological censorship
shares with the area-increase theorem the fact that its
conclusions can be radically altered by subtle quantum
effects. (In contrast, generating macroscopic violations of
the positive mass theorem requires macroscopic viola-
tions of the energy conditions.)
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