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Stochastic Modeling Approach to the Incubation Time of Prionic Diseases
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Transmissible spongiform encephalopathies are neurodegenerative diseases for which prions are the
attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct
interaction between the pathologic (PrPSc) form and the host-encoded (PrPC) conformation, in a kind of
autocatalytic process. Here we show that the overall features of the incubation time of prion diseases are
readily obtained if the prion reaction is described by a simple mean-field model. An analytical
expression for the incubation time distribution then follows by associating the rate constant to a
stochastic variable log normally distributed. The incubation time distribution is then also shown to be
log normal and fits the observed BSE (bovine spongiform encephalopathy) data very well. Computer
simulation results also yield the correct BSE incubation time distribution at low PrPC densities.
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sible for the major aspects of the dynamics. tion stops [12,15].
The so-called prion diseases comprise fatal transmis-
sible spongiform encephalopathies such as the well-
known bovine spongiform encephalopathy (BSE) and
sheep scrapie. In humans, these progressive neuro-
degenerative diseases include Kuru, Creutzfeldt-Jakob
disease (CJD), Gerstmann-Straeussler-Scheinker syn-
drome, and fatal familial insomnia. Common pathology
includes spongiform degeneration and characteristic
formation of plaques in the brain tissue [1]. Variant CJD
correlated with a (BSE)-like prion strain have been iden-
tified and are believed to be linked to the consumption
of contaminated food [2–5].

The protein-only hypothesis [6] states that the infec-
tious agent is a protein, named prion [7,8], which is a
pathogenic isoform seemingly able to convert the normal
isoform in an autocatalytic process. Two conformations
of this protein are important for characterizing the dis-
ease, namely, the normally folded host-encoded cellular
protein called PrPC and an abnormal pathogenic confor-
mation named PrPSc. The latter form is hydrophobic, has
a tendency to form aggregates, and may be found in
different strains. The pathogenic form PrPSc is more
stable than the endogenous cellular form and is known
to be partially resistant to proteolytic treatment, radia-
tion, and high temperatures. One of the most accepted
models for prion replication assumes that this form acts as
a template for converting the host prion into its own
conformation in a kind of autocatalytic reaction [9,10].
Understanding the dynamics of the PrPC ! PrPSc trans-
formation is crucial if one is attempting to explain and
predict the main stages of the disease. The reaction is
complex, perhaps involving other participants possibly
acting as chaperone, to help mediate protein folding
[11]. The number of parameters involved for thoroughly
describing the transformation process is thus expected
to be very large [12,13]. It is therefore important to be
able to recognize which ones are mandatory, i.e., respon-
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Here we present a simple, analytically solvable, mean-
field model for describing the prion reaction problem,
which focuses on realistically reproducing the incubation
time of the disease. For notational convenience it is useful
to introduce the following definitions: A stands for the
host protein (PrPC) and B stands for the pathogenic form
(PrPSc) with a � �A� and b � �B� denoting volume con-
centrations. We then write the autocatalytic conversion
reaction simply as

A� B !
K

2B; (1)

where K is the reaction rate. For simplicity we shall
assume that the total concentration a� b � � is kept
fixed at all times. This means that there is no metabolic
decomposition of B and any metabolic decomposition of
A is immediately compensated by the host genetic system.
It also implies that the host takes no action for producing
new, normal protein, as the reaction takes place. In order
to stick to the simplest possible case we are also assuming
that the reaction is unidirectional and favors the most
stable form PrPSc. No other strains are supposed to be
present and both forms are assumed to be uniformly
distributed. The kinetic evolution [14] is then given by
db=dt � Kab � K��� b�b which is the simplest pos-
sible nonlinear equation describing an autocatalytic re-
action. This equation can be easily integrated up to time
T giving

T �
1

K�a0 � b0�
ln

�
a0
b0

�
b�T�

a0 � b0 � b�T�

��
(2)

with b0 being the infection dose given at time t � 0 and
a0 the initial concentration of A. According to this ex-
pression b�t� is slowly varying for small t, followed by a
period of rapid increase in a short time interval, then
reaching a plateau for long enough times when the reac-
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We now define the incubation time (TI) as the time it
takes for the number of pathogenic prions to reach a given
value bI, i.e., b�TI� � bI. (It makes no difference to our
calculations whether bI represents a number of prions or
an aggregate with size bI.) A useful approximation can
be obtained by assuming, reasonably, that b0=a0 	 1.
This gives

TI ’
1

Ka0
ln

�
bI
b0

�
1

1� bI=a0

��
: (3)

This log dependence of the incubation time on the initial
dose was quantitatively observed by Prusiner [16] from
the inoculation of a form of scrapie in hamsters (Fig. 1).
Prusiner’s results also indicate that the survival time is
practically independent of the dose. Equation (3) is con-
sistent with this finding (see also [15]). If we define the
time of death as the time it takes for the number of B’s to
reach the value bD, i.e., b�TD� � bD, we find that TD � TI
does not depend on b0. Moreover, Eq. (3) can be easily
adapted to fit Prusiner’s data. In order to mimic the end-
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FIG. 1. Dependence of the incubation time (TI) on the in-
fection (initial) dose ( � n with b0=�0 � 10n�10). The experi-
mental data were obtained from Prusiner’s work [16] and
dashed lines are just meant to lead the eye. In the main figure
we apply regression to the data (n > 2) to obtain the best fit
with Eq. (3). The most diluted part (n & 2) was left out due to
the abrupt change in behavior in this region, leaving only two
points (n � 1; 2) for the fitting. Therefore only the inclinations
(� 1=�Ka0�) are kept. The inset shows a nonlinear least-
squares full fitting (all n) to Eq. (3) with the ansatz K ! Keff �
Kf1� a1=�a2 � exp�n��g.
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point titration method used in the experiment, we first
define all concentrations relative to the largest experimen-
tal concentration which we shall call �0. We then write
b0=�0 � 10n�10 (n � dose) and allow n to vary from
n � 0 (smallest concentration) to n � 10 (largest con-
centration). We can now apply regression to the data
(using only the integral values for n) to obtain the best
fit. Notice, however, that the experimental curves are
composed of two branches, both exhibiting a sudden
increase in the inclination for n & 2 (see Fig. 1). This
behavior seems to be indicative of a threshold, possibly
leading to a smaller rate constant at high dilutions. One
can simulate a dose dependent activation mechanism
linked to the rate constant K by making the follow-
ing ‘‘ansatz’’: we make K ! Keff with Keff �
Kf1� a1=�a2 � exp�n��g. With these implementations,
Eq. (3) reads TI � C� �ln10=�Ka0��n, with C being a
constant (independent of b0). The phenomenological
constants, estimated with a nonlinear least-squares fitting
to this equation, with K replaced by Keff , are a1 � 0:23�4�
[0.61(2)] and a2 � �0:51�6� [2.1(2)] for the incuba-
tion (death) curve. The result of the full fitting is shown
in the inset of Fig. 1. Notice that Keff rapidly approaches K
for n > 2.

However, we decided to avoid dealing with the con-
troversial features associated with the region n & 2 (con-
taining only two points) and stick to the (larger) less
inclined part of the experimental curve. Therefore any
parameter obtained from the y intercepts in Fig. 1 will not
be taken into account. The regression coefficient gives
1=�Ka0� � 3:12�3� days for the incubation part of the
curve and 1=�Ka0� � 3:02�6� days for the death part of
the curve. This (partial) fitting is represented by the
continuous line in the main part of Fig. 1. We can easily
check the reasonableness of these figures. Notice that we
could have started with the Michaelis-Menten equation,
namely, db=dt � KT�ab=�KM � a�� with KT and KM
being the turnover number and the Michaelis constant,
respectively [13]. Direct integration of this equation
yields

KT  T �
1

a0 � b0

�
KM ln

�
a0

a0 � b0 � b�T�

�

� �KM � a0 � b0� ln
b�T�
b0

�
(4)

which is consistent with Eq. (2) for KM � a0 � b0 and
K ’ KT=KM. We can therefore estimate the prion KT=KM
ratio for the scrapie strain used by Prusiner in hamsters. If
we assume a0� nanomole liter�1 [12,13] we find
KT=KM � 103 M�1 s�1. This value is within the range
expected for enzymes, in which case KM lies between
10�7 to 10�1 M and KT falls in the range from 10 and
107 s�1.

Having discussed the behavior of the incubation time
on b0, we now turn our attention to the dependence of TI
198101-2
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FIG. 2. Incubation time distributions with the time scale
normalized by the mean incubation time, i.e., tI � TI=TI .
The full circles represent the observed incubation time distri-
bution for BSE-infected cattle in the U.K. [17–19]. (a) shows
the results from computer simulations on an N  N (N � 200)
square lattice, with a number of PrPSc seeds NB0 � 6 (see text).
The values of NA0 shown represent the initial PrPC concen-
tration and only a few curves for NA0 were drawn to avoid
figure cluttering. Notice the tendency for better agreement with
the observed results as NA0 gets smaller. (b) shows the same
experimental data as in (a), along with the proposed analytical
distribution G�tI�, obtained from our model assuming a log
normal distribution for the rate constant. When the time units
are scaled by the mean time we are left with a single parameter,
namely, �, whose best fitted value is given by � � 0:255� 6.

P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2003VOLUME 90, NUMBER 19
on a0. The role played by the host prion initial concen-
tration is useful for describing reactions, such as (1), in
numerical simulation approaches. The explicit power law
dependence of TI on a0 can be seen by expanding Eq. (2)
in terms of bI=a0. This gives

TI �
1

Ka0

�
ln
bI
b0

�
bI
a0

�O

��
bI
a0

�
2
��

(5)

and therefore TI � A1=a0 � A2=a
2
0. This kind of behavior,

having the form of a sum of monomer and dimer terms,
has already been suggested in the literature [17].
However, the determination of the explicit dependence
of the coefficients A1 and A2 on bI and b0, as shown here,
was only possible because of the simplicity of the model.

The initial concentration of the endogenous PrP protein
is determinant for the dynamics of the prion reaction
since it represents the reaction fuel. The higher the initial
concentration a0, the lower the time for the PrPSc con-
centration to reach the value bI. These results have been
obtained through careful computer simulations by Cox
et al. [17]. They also showed that the incubation time
distributions for different a0 collapse to a single form if
the time scale is properly normalized to unity. Will our
simple, minimally parametrized model represented by
the basic reaction (1) be able to reproduce such results?
In order to address this question, we ran computer simu-
lations based on a cellular automata (CA) with rules
following a close resemblance to our model.

According to the CA rules, an N  N (N � 200)
square lattice is randomly populated with a num-
ber (NA0) of the host A � PrPC protein and a number
(NB0 � 6) of the B � PrPSc misfolded protein. NA0 is
given as a small percentage of the total number of sites
available and to each of the B sites is assigned a ‘‘mass’’
(m), initially set to unity. The A’s and B’s are allowed to
diffuse randomly to their nearest neighbor sites and a
reaction occurs when a B is approached by an A at a
distance d �

����
m

p
. In this case the normal prion disap-

pears and the misfolded prion has its mass increased
by 1. The reaction is unidirectional, favoring B, with
the A’s slowly disappearing from the system, keeping
A� B � const. One site-by-site sweep through the lattice
is made for diffusion followed by another one for reaction.
The time unit is then increased by 1 (arbitrary units). The
reaction stops when one of the masses reaches the value
m � 40, the corresponding computer time thus character-
izing the incubation time. The above values for the pa-
rameters (not the CA rules) were adjusted from the
numerical simulations of Cox et al. [17] in a hexagonal
lattice. The mass is here to mimic clusterization without
assigning any geometric form to the cluster. Besides
simplifying the computer code and speeding up the simu-
lations, this helps reduce the influence of local topology
on the final results.
198101-3
Figure 2(a) shows the simulation results for the
incubation time distributions for several values of NA0,
with the time scale normalized by the mean time. Notice
that as the PrPC concentration is decreased, the corre-
sponding distribution converge asymptotically to the ex-
perimental results (BSE-infected cattle in the U.K. [17–
19]) represented by the full circles. Increasing NA0 makes
the system more homogeneous which diminishes fluc-
tuations and narrows the distribution. The biological
198101-3
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concentrations (believed to be nanomolar) correspond to
an areal concentration around Nbio

A0 � 0:001% [17]. With
the CA rules above, such small concentrations would
require very large computing time, if feasible at all.
The best agreement is obtained for NA0 � 0:6% which
is as far as we could go with these simulations.

Our next issue is to search for an analytical form for
the incubation time distribution. Knowledge of such a
function is not only important to check the reliability
of the model but also to provide a distribution that can be
used in statistical studies [20]. We need to adapt the
deterministic model to accommodate a stochastic vari-
able following a known distribution and associate it with
Eq. (2) [or (5)]. Since the protein-folding process actually
involve many steps [13], possibly chaperone assisted [21],
the end result of the prionic reaction can adequately be
viewed as a series of multiplicative processes. It is there-
fore reasonable to assume that the distribution of the
reaction rate K in a population is log normal [22]. Since
K / 1=TI it is easy to show that TI also follows a log
normal distribution with the same deviation. The scaled
distribution G�tI�, with tI � TI=TI, is then readily ob-
tained. One finds

G�tI� �
1

�
�������
2�

p t�1
I exp

�
�
1

2

�
lntI � �5=2��2

�

�
2
�

(6)

which does not depend either on the initial variables or
on bI. We are therefore left with a single fitting parame-
ter, namely, �, the standard deviation of lnK. Applying
nonlinear least-squares fitting to Eq. (6) we get � �
0:255��6�. The final result is shown in Fig. 2(b). In this
figure the observed data are the same as used in Ref. [17]
for BSE-infected cattle in the United Kingdom born in
1987 [18,19]. It is worth mentioning that the nonscaled
incubation time distribution can be shown to narrow with
increase in dose, as observed in laboratory experiments.

It should finally be pointed out that aggregation seems
to be necessary to separate the time scales of sporadic and
infectious diseases. This aspect of prionic reactions,
along with the needing of fine-tuning of parameters to
prevent everyone from getting the disease without infec-
tion, has been first addressed by Eigen [13]. However, the
simplifying assumption that all K’s are represented by a
single K which is log normally distributed seems to be
enough to lead to the correct distribution.

In conclusion, a simple mean-field model, based on an
autocatalytic mechanism, is shown to contain the basic
ingredients necessary to describe the essential features
associated with the incubation time of the complex prion
198101-4
conversion reactions. Assuming that the rate constant is a
random variable, following a log normal distribution, we
were able to provide a closed form for the incubation time
distribution of BSE-infected cattle. The surprisingly
simple analytical expression derived for the incubation
time distribution contains only one parameter, namely,
the variance of the logarithm of the rate constant. The
simplicity of the model is characterized by the almost
naive differential equation upon which it is based, by
simple computer simulations, and by the minimal set of
parameters used to describe the autocatalytic process.
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