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A detailed study of the paramagnetic to ferromagnetic phase transition in the one-band Hubbard
model in the presence of binary-alloy disorder is presented. The influence of the disorder (with
concentrations x and 1 — x of the two alloy ions) on the Curie temperature 7, is found to depend
strongly on electron density n. While at high densities, n > x, the disorder always reduces 7; at low
densities, n < x, the disorder can even enhance T, if the interaction is strong enough. At the particular
density n = x (i.e., not necessarily at half-filling) the interplay between disorder-induced band splitting
and correlation induced Mott transition gives rise to a new type of metal-insulator transition.
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In correlated electron materials it is a rule rather than
an exception that the electrons, apart from strong inter-
actions, are also subject to disorder. The disorder may
result from nonstoichiometric composition, as obtained,
for example, by doping of manganites (La;_,Sr,MnO;)
and cuprates (La;_,Sr,CuQ,) [1], or in the disulfides
Co,_,Fe,S, and Ni;_,Co,S, [2]. In the first two ex-
amples, the Sr ions create different potentials in their
vicinity which affect the correlated d electrons/holes.
In the second set of examples, two different transition
metal ions are located at random positions, creating two
different atomic levels for the correlated d electrons. In
both cases the random positions of different ions break
the translational invariance of the lattice, and the number
of d electrons/holes varies. As the composition changes,
so does the randomness, with x = 0 or x = 1 correspond-
ing to the pure cases. With changing composition the
system can undergo various phase transitions. For ex-
ample, FeS, is a pure band insulator which becomes a
disordered metal when alloyed with CoS,, resulting in
Co,_,Fe,S,. This system has a ferromagnetic ground
state for a wide range of x with a maximal Curie tem-
perature 7. of 120 K. On the other hand, when CoS, (a
metallic ferromagnet) is alloyed with NiS, to make
Ni;_,Co,S,, the Curie temperature is suppressed and
the end compound NiS, is a Mott-Hubbard antiferromag-
netic insulator with Néel temperature Ty = 40 K.

Our theoretical understanding of systems with strong
interactions and disorder is far from complete. For ex-
ample, it was realized only recently that in gapless fer-
mionic systems the soft modes couple to order parameter
fluctuations, leading to different critical behavior in the
pure and the disordered cases [3]. A powerful method
for theoretical studies of strongly correlated electron
systems is the dynamical mean-field theory (DMFT)
[4—6]. The DMFT is a comprehensive, conserving, and
thermodynamically consistent approximation scheme
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which emerged from the infinite dimensional limit of
fermionic lattice models [7]. During the last ten years
the DMFT has been extensively employed to study the
properties of correlated electronic lattice models.
Recently the combination of DMFT with conventional
electron structure theory in the local density approxima-
tion (LDA) has provided a novel computational tool,
LDA + DMFT [8,9], for the realistic investigation of
materials with strongly correlated electrons, e.g., itinerant
ferromagnets [10].

The interplay between local disorder and electronic
correlations can also be investigated within DMFT [11-
15]. Although effects due to coherent backscattering
cannot be studied in this way [11], since the disorder is
treated on the level of the coherent potential approxi-
mation [16], there are still important physical effects
remaining. In particular, electron localization, and a
disorder-induced metal-insulator transition (MIT), can
be caused by alloy-band splitting. In this Letter we study
the influence of disorder on the ferromagnetic phase. We
show that in a correlated system with binary-alloy dis-
order the Curie temperature depends nontrivially on the
band filling. In the disordered one-band Hubbard model
we find that for a certain band filling (density) n =
N,/N,, where N, (N,) is the number of electrons (lattice
sites), disorder can weakly increase the Curie tempera-
ture provided the interaction is strong enough. A simple
physical argument for this behavior is presented. We also
find that at special band fillings n # 1 the system can
undergo a new type of Mott-Hubbard MIT upon increase
of disorder and/or interaction.

In the following we will study itinerant electron ferro-
magnetism in disordered systems, modeled by the
Anderson-Hubbard Hamiltonian with on-site disorder

H= Ztijc;rg—cjtr + Zfz’”ia + UzniTnil: (1)
io i

ijo
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where ;; is the hopping matrix element and U is the local
Coulomb interaction. The disorder is represented by the
ionic energies €;, which are random variables. We consider
binary-alloy disorder where the ionic energy is distrib-
uted according to the probability density P(e) = x&(e +
A/2) 4+ (1 — x)8(e — A/2). Here A is the energy differ-
ence between the two ionic energies, providing a measure
of the disorder strength, while x and 1 — x are the con-
centrations of the two alloy ions. For A > B, where B is
the bandwidth, it is known that binary-alloy disorder
causes a band splitting in every dimension d = 1, with
the number of states in each alloy subband equal to 2xN,,
and 2(1 — x)N,, respectively [16].

We solve (1) within DMFT. The local nature of the
theory implies that short-range order in position space is

A i{cm C;’ g;l} = Zc;ng;%ca'n - Eiz ]B dTno(T) - %Z /IB dTCTr(T)CU(T)C*fo(T)Cfo'(T),
no s 70 s 0

where we used a mixed time/frequency convention for
Grassmann variables c,, cj. In the presence of binary-
alloy disorder the single impurity problem has to be
solved twice in each self-consistency loop. Aver-
ages over the disorder are obtained by (- -)4 =
[ deP(e)(- - ).

Since an asymmetric DOS is known to stabilize ferro-
magnetism in the one-band Hubbard model for moderate
values of U [17-19], we use the DOS of the fcc lattice
in infinite dimensions, N°(e) = exp[—(1 + +2¢)/2]/

\r(l + V2€) [20]. This DOS has a square root singular-

ity at € = —1/+/2 and vanishes exponentially for € — 0.
In the following the second moment of the DOS, W, is
used as the energy scale and is normalized to unity [21].
The one-particle Green function in Eq. (2) is determined
by solving the DMFT equations iteratively [17,18] using
quantum Monte Carlo (QMC) simulations [22]. Curie
temperatures are obtained by the divergence of the ho-
mogeneous magnetic susceptibility [17,23].

We find a striking difference in the dependence of the
Curie temperature T, on disorder strength A for different
band fillings n <x and n > x (we chose x = 0.5 for
numerical calculations). At n = 0.7, the critical tempera-
ture T.(A) decreases with A for all values of U and
eventually vanishes at sufficiently large disorder
[Fig. 1(a)]. By contrast, at n = 0.3, T.(A) weakly de-
creases with A at small U, but increases with A at large
values of U [Fig. 1(b)].

As will be explained below, this striking difference
originates from three distinct features of interacting elec-
trons in the presence of binary-alloy disorder.

(i) T" =T.(A =0), the Curie temperature in the
pure case, depends nonmonotonically on band filling n.
Namely, 7% (n) has a maximum at some filling n = n*(U),
which increases as U is increased [17]; see Fig. 2.

(i1) In the alloy disordered system the band is split [16]
when A > W. As a consequence, for n <2xand T < A
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missing. However, all dynamical correlations due to the
local interaction are fully taken into account.

In the DMFT scheme the local Green function G, is
given by the bare density of states (DOS) N°(€) and the
local self-energy 2., as G,, = [deN’(e)/(iw, + p —
S sn — €). Here the subscript n refers to the Matsubara
frequency iw, = i(2n + 1)ar/B for the temperature T,
with B8 = 1/kgT, and u is the chemical potential
Within DMFT the local Green function G, is deter-
mined self-consistently by

) x o-1

Ga’n = —<fD[Co; C;]CUHC;neﬂliCaviT»Ga }> ’ (2)
fD[Cg, c;]eﬂ"{cﬂ'CmGu } dis

together with the k-integrated Dyson equation G,

G, + 3,,. The single-site action A; for a site with
the ionic energy €; = =A/2 has the form

3)

electrons occupy only the lower alloy subband while the
upper subband is empty. Effectively, one can therefore
describe this system by a Hubbard model mapped onto
the lower alloy subband. Hence, it corresponds to a single
band with the effective filling ne;; = n/x. It is then pos-
sible to determine 7, from the phase diagram of the
Hubbard model without disorder [17].

(iii) The disorder leads to a reduction of 7% (n.;) by a
factor x; i.e., we find

T.(n) = xTE(n/x) “4)

when A > W [24]. Hence, as illustrated in Fig. 2, T, can
be determined by TP (n.). Surprisingly, then, it follows
that, if U is sufficiently strong, the Curie temperature of a
disordered system can be higher than that of the corre-
sponding pure system (cf. Fig. 2).
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FIG. 1. Curie temperature 7, as a function of disorder

strength A for band filling n larger (a) and smaller (b) than

the ionic concentration x (here x = 0.5): (a) n = 0.7, U = 2, 4,

and 6; (b) n=0.3, U=2, 3,4, 5, and 6 (U increases from

bottom to top). Note the different range of A in both figures.
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FIG. 2. Schematic plot explaining the filling dependence of
T, for interacting electrons with strong binary alloy disorder.
Curves represent T%, the Curie temperature for the pure system,
as a function of filling n at two different interactions U; < U,
(cf. [17]). For n = x, T, of the disordered system can be
obtained by transforming the open (for U;) and the filled
(for U,) point from n to ngy, and then multiplying T%(n/x)
by x as indicated by arrows. One finds 7,(n) < T%(n) for U,, but
T.(n) > T2(n) for U,. This difference originates from the
nonmonotonic dependence of T% on n.

To illustrate the alloy-band splitting in the presence of
strong interactions discussed above [see (ii)] we calculate
the spectral density from the QMC results by the maxi-
mum entropy method (MEM). The results in Fig. 3 show
the evolution of the spectral density in the paramagnetic
phase at U =4 and n = 0.3. At A =0 the lower and
upper Hubbard subbands can be clearly identified. The
quasiparticle resonance is merged with the lower Hubbard
subband due to the low filling of the band, and is reduced
by the finite temperature. At A > 0 the lower and upper
alloy subbands begin to split off. A similar behavior was
found at n = 0.7. The separation of the alloy subbands in

\LHB
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A=0.0
UHB

v A=14
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' A=1.8
I~ 0

-1 0 1 2 3 4 5
-

FIG. 3. Spectral density for different disorder strengths A at
n = 0.3 and U = 4 as obtained by MEM from QMC data at
T = 0.071. The position of the lower/upper Hubbard subbands
(LHB/UHB) are almost unaffected by the disorder, while the
upper alloy subband shifts to the right as indicated by arrows.
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the correlated electron system for increasing A is one of
the preconditions [cf. (ii)] for the enhancement of T, by
disorder when n < x, as discussed above.

The splitting of the alloy subbands and, as a result, the
changing of the band filling in the effective Hubbard
model imply that 7. vanishes for n > x. Namely, in the
ferromagnetic ground state each of the alloy subbands can
accommodate only xN, and (1 — x)N, electrons, respec-
tively. Therefore, if the ground state of the system were
ferromagnetic, the upper alloy subband would be partially
occupied for all n > x. This would, however, increase the
energy of the system by A per particle in the upper alloy
subband. Therefore, in the A >> U limit the paramagnetic
ground state is energetically favorable. This explains why
T, vanishes at n = 0.7, as found in our QMC simulations
[Fig. 1(a)]. Our conclusion that T, vanishes for n.; =
n/x > 1 when A > W is consistent with the observation
in [17] that there is no ferromagnetism for n > 1 in the
Hubbard model without disorder on fcc lattice in infinite
dimensions.

The filling n = x is very particular because a new MIT
of the Mott-Hubbard type occurs. Namely, when A in-
creases (at U = 0), the noninteracting band splits, leaving
2xN, states in the lower and 2(1 — x)N, states in the
upper alloy subbands. Effectively, it means that at n =
x the lower alloy subband is half filled (n. s = 1).
Consequently, a Mott-Hubbard MIT occurs in the lower
alloy subband at sufficiently large interaction U [25]. In
fact, for A > U we may infer a critical value U, =
1.47W* at T = 0 from the results of Refs. [26,27], where
W* is the renormalized bandwidth of the lower alloy
subband. Furthermore, from the analogy of this MIT
with that in the pure case [28] we can expect a discon-
tinuous transition for 7 < T* = 0.02W*, and a smooth
crossover for T = T*. From the results shown in Fig. 4 it
follows that 7% < 0.071, since for T = 0.071 and U = 6 a
gaplike structure develops in the spectrum at A = 1.7,
implying a smooth but rapid crossover from a metallic to
an insulatorlike phase [29]. Indeed, as the gap opens, the
form of the self-energy changes into 2,, ~ 1/(iw,)
which is characteristic for an insulator [4].

The MIT described above is not obscured by the onset
of antiferromagnetic long-range order because in infinite
dimensions the fcc lattice is completely frustrated [20].
Hence the insulator is paramagnetic. The actual boundary
between the paramagnetic metal (PM) and the paramag-
netic insulatorlike phase (PI) has not yet been determined.
The thick line in the inset of Fig. 4 indicates the approxi-
mate position of the phase boundary between the PM and
PI phases. A ferromagnetic polarization exists only in the
metallic phase.

In summary, we showed within DMFT that the in-
terplay between binary-alloy disorder and electronic cor-
relation can result in unexpected effects, such as the
enhancement of the transition temperature 7, for itiner-
ant ferromagnetism by disorder, and the occurrence of a
Mott-Hubbard type MIT off half filling. An observation
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FIG. 4. Spectral density for disorder strengths A =0, 1, 1.6,
and 1.8 (dotted, dashed, long-dashed, and solid curves, respec-
tively) at n = 0.5 and U = 6 as obtained by MEM from QMC
data at T = 0.071 with Trotter slice A7 = 0.125. For A = 1.7 a
Mott-Hubbard gaplike structure develops around the Fermi
level. Inset: A — T phase diagram of the binary alloy
Hubbard model on the fcc lattice in infinite dimensions at
U = 6; PM, paramagnetic metal; PI, paramagnetic insulator-
like phase; FM, ferromagnetic metal. Points with error bars
represent the Curie temperatures obtained from QMC simula-
tions; the solid line is a guide for the eye only. The thick line
indicates the phase boundary between the PM and PI phases
(see text). Circles: parameter values (A, T) corresponding to the
spectral densities shown in the main panel.

of these effects requires good control of the system pa-
rameters over a wide range as was recently shown to be
possible in experiments with optical lattices [30].
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