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Low-Speed Impact Craters in Loose Granular Media
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We report on craters formed by balls dropped into dry, noncohesive, granular media. By explicit
variation of ball density �b, diameter Db, and drop height H, the crater diameter is confirmed to scale as
the 1=4 power of the energy of the ball at impact: Dc � ��bD

3
bH�1=4. Against expectation, a different

scaling law is discovered for the crater depth: d� ��3=2
b D2

bH�1=3. The scaling with properties of the
medium is also established. The crater depth has significance for granular mechanics in that it relates to
the stopping force on the ball.
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jectile impact. By contrast, the diameter has traditionally
been the primary observable. Prior literature assumes that

to a ringstand. The ball is released with zero translational
and rotational speed directly above the center of the
Sand is fragile: If you set down a ball, no matter how
gingerly or how roughly, the sand can barely support the
ball’s weight; one slight tap and the ball digs in deeper. At
the same time, sand can be very strong: If you drop the
ball from some height, the sand can stop it quickly,
forming a shallow crater in the process; a higher drop
height will lead to only a slightly deeper crater. Simi-
larly intriguing combinations of toughness and fragility
have led to tremendous recent research activity into the
physics of granular media in general [1,2]. At the scale of
grain-grain interactions, there are only a few possible
forces. There can be normal forces perpendicular to the
contact plane, there can be static and sliding friction
parallel to the contact plane, and there can be inelastic
collisions. Since granular packings are random, the nor-
mal forces are random too but can be correlated over
long distances in so-called ‘‘force chains.’’ Dissipation
can be either through inelastic collisions or sliding fric-
tion. But which of these is responsible for taking up the
energy of an impacting ball?

Geophysicists have long been interested in the craters
formed by impact or explosion [3–5]. Since meteorites
generally strike at non-normal angles but nevertheless
produce circular craters, it is believed that impacts can
be likened to explosions. Extensive data for buried ex-
plosives and high-speed (km=s) ballistics impact indicate
that the crater diameter Dc often scales as a power of
energy. For example, the exponent is 1=3 when the energy
is dissipated by plastic flow of the medium throughout a
volume �D3

c; it is 1=4 when the energy goes into lifting a
volume �D3

c by a distance �Dc against the force of
gravity. This ‘‘gravity-limited’’ regime was recently ob-
served in low-speed laboratory impact experiments [6].
There, steel balls of various diameters Db were dropped
into sand from various heights H; the resulting crater
diameters scaled as Dc � �D3

bH�1=4. For high-speed
impacts in loose sand, however, ballistics data support
Dc � �1=3

b D5=6
b H1=6 [5,7].

Here we focus on the depth of craters formed by pro-
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depth is proportional to diameter, as in explaining the
scaling with energy, but this has not been checked in
laboratory experiments. There are few actual observa-
tions, but ‘‘simple craters’’ formed by meteorite impact
are thought to be parabolic with a depth equal to 1=5 of
the diameter [4] (‘‘complex craters’’ are larger and exhibit
flat floors or central peaks). The crater depth is also a key
physical quantity because it relates to the force exerted by
the medium onto the projectile. Specifically, if a ball of
mass m is dropped from rest and forms a crater of depth
d, then the average stopping force satisfies

hFid � mgH: (1)

Note that H is the total drop distance, equal to the sum of
initial height above the medium plus the depth of the
crater. This simple experiment therefore gives a direct
signature of the dissipation mechanics. We find that the
depth d can be much less than the drop height H; there-
fore, to a suprising extent, the dissipation force can far
exceed the ball weight. We also find that crater depth and
diameter scale differently with ball density, ball diame-
ter, and total drop distance. This contradicts common
assumption [3–5]. So while our observations could lead
to new insight into fundamental granular forces, they
may also help in understanding geophysical craters: per-
haps as a simple model system for comparison/contrast,
and perhaps as a warning that crater depth need not be
proportional to diameter unless explicity demonstrated.
Of course, the detailed analogy between our low-speed
impact craters and high-speed geophysical craters may be
limited due to differences in the transport and dissipation
mechanisms and in the role of cohesion. Limited analogy
may also be sought for impact on metals [8,9].

Our experimental procedures are as follows. First,
either a 1 or 2 L beaker is filled half way with a granular
medium (results are independent of beaker size). The
container is then horizontally swirled and lightly tapped
in order to level the surface without noticeable compac-
tion. Next a ball is fixed in the jaws of a wrench mounted
2003 The American Physical Society 194301-1
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FIG. 1 (color online). The diameter and depth of craters
formed by balls dropped into 0.2 mm diameter glass beads,
as a function of total energy loss, E � mgH. Each data point
represents the experimental result for a single drop height H.
Plotting vs mgH collapses the diameter data, as seen earlier in
Ref. [6], onto a 1=4 power law. By contrast, the depth data does
not collapse, but follows a 1=3 power law. Symbol, ball type,
ball density, and ball diameter are as follows: 
 for hollow
plastic, 0:26 g=cm3, 2:54 cm; � for wood, 0:83 g=cm3,
1:59 cm; � for nylon, 1:10 g=cm3, 1:59 cm; � for nylon,
1:10 g=cm3, 2:54 cm; + for silicon rubber, 1:10 g=cm3,
1:52 cm; 4 for acrylic, 1:20 g=cm3, 1:59 cm; � for live ball,
1:20 g=cm3, 3:82 cm; � for dead ball, 1:30 g=cm3, 3:82 cm;
� for delrin, 1:40 g=cm3, 1:59 cm; � for Teflon, 2:20 g=cm3,
1:59 cm; � for ceramic, 3:90 g=cm3, 1:27 cm. NB: Data for
three even denser balls are omitted: stainless steel, 7:90 g=cm3,
2:54 cm; lead, 11:3 g=cm3, 1:13 cm; and tungsten carbide,
16:4 g=cm3, 1:91 cm. These produce craters that also scale as
Dc �H1=4 and d�H1=3; however, they do not exhibit the same
Dc � E1=4 collapse as the less dense balls.
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beaker. It splashes into the granular medium and comes to
rest with some of its lower portion buried and its top fully
exposed. This produces a crater with a circular rim that
extends above the original horizontal surface of the me-
dium. As is standard, we define the crater diameter by the
location of maximum rim height. But now, we also mea-
sure the crater depth. Useful definitions might include the
depth above which the ball is exposed, or the depth below
which grains are not disturbed. Rather, to make contact
with Eq. (1) and the average stopping force on the ball, we
define the crater depth as the distance of the bottom of the
ball below the initial horizontal surface of the medium.
This is determined to �0:5 mm by measuring the loca-
tion of the top exposed surface of the ball. Before pro-
ceeding, two bounds on the measured quantities should be
noted. First, it is not possible to measure the crater diam-
eter if it is less than the ball diameter. But even if the
diameter is less than this minimum, the depth is still
easily measured. Second, a ball dropped from infinitesi-
mally above the surface of the medium can still penetrate
to a nonzero depth, more so for denser balls. This defines a
minimum crater depth, and corresponds to a minimum in
total drop distance H. Our dynamic range for H is
1–1000 mm at best, but is more typically a factor of 100.

In Fig. 1 we show crater size vs loss in ball energy, E �
mgH, for a variety of balls dropped into dry, monodis-
perse, 0.2 mm diameter glass beads. When so plotted, the
diameter data collapse onto a power-law curve, Dc �
�0:24cm=erg1=4�E1=4. The crater diameter scaling is thus
Dc � ��bD

3
bH�1=4. This agrees with the gravity-limited

scaling observation of Ref. [6]. Our data also extend that
work, both in dynamic range and in explicit variation of
the ball density. However, the most striking feature of
Fig. 1 is that the crater depth data do not show a similar
collapse. Apparently, the crater depth does not scale with
the ball energy. Furthermore, it appears to follow a differ-
ent power law with total drop distance, d�H1=3. The
weighted average of the exponents for power-law fits vs H
are 0:231� 0:005 for diameter and 0:318� 0:005 for
depth; for individual data sets, the average uncertainty
is 0:03. Against natural expectation and contrary to prior
assumption [3–6], the crater depth and diameter are
separate length scales set by different physics.

Before further analyzing the data in Fig. 1, two specific
comparisons should be noted. First, the smaller nylon ball
and the silicon rubber ball have nearly the same density
and diameter, but have very different surface properties:
nylon is slick and silicon rubber is tacky. But as seen in
Fig. 1, the crater depth data for these two balls (� and +,
respectively) are indistinguishable. Therefore, friction
between the ball and grains cannot be the dissipation
mechanism responsible for stopping the ball. Second,
the ‘‘live’’ and ‘‘dead’’ balls have nearly the same density
and diameter, but have very different restitution coeffi-
cients. But as seen in Fig. 1, the depth data for these two
balls (� and �, repectively) are indistinguishable.
194301-2
Therefore, no significant energy is transferred to internal
degrees of freedom of the ball.

We now explore the full form of the scaling laws for
crater size. If the ball diameter and drop height are the
only relevant length scales, then the simplest dimension-
ally correct laws consistent with the H dependence of
Fig. 1 would be Dc / D3=4

b H1=4 and d / D2=3
b H1=3. To test

this, we deduce the dimensionless proportionality con-
stants for all the size vs H data. The results are plotted in
Fig. 2(a) as a function of ball density. For the crater
diameter, we find Dc � �1=4

b as expected from the above
E1=4 collapse. However, this trend is violated by the three
densest balls (stainless steel, lead, and tungsten carbide),
which were omitted from Fig. 1. For these three, the
crater diameter is Dc 	 1:5D3=4

b H1=4 with no apparent
dependence on ball density. For the crater depth, we
have no a priori expectation other than that denser balls
should penetrate deeper. The data in Fig. 2(a) are con-
sistent with a simple power-law form, d� �1=2

b ; the un-
certainty in the exponent is conservatively �0:05. Note
that this holds for all balls, even the three densest where
Dc � �1=4

b fails. As a final consistency check, the explicit
dependence of crater size on ball diameter is shown in
Fig. 2(b). Though the dynamic range is only a factor of 4,
194301-2
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FIG. 2 (color online). Scaling of crater size with ball density
and diameter. Each point represents the result of a Dc / H1=4 or
d / H1=3 power-law fit to the size vs H data sets of Fig. 1,
divided by the labeled combination of ball diameter or density
and drop height; error bars are comparable to symbol size. All
data are for 0.2 mm diameter glass beads. Note that the three
densest balls do not obey the Dc � �1=4

b scaling; data for these
balls are boxed in both (a) and (b).
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the data are consistent with expectation, Dc �D3=4
b and

d�D2=3
b .

Next we vary the properties of the granular medium,
studying craters formed by a 1-inch diameter nylon ball
dropped into the media listed in Table I. Besides grain
size, the other specifications are the (bulk) grain density
�g, and the angle of repose r. Since identical cratering is
found in 0.2 and 1 mm diameter glass beads, the grain size
is not an important length scale (as suspected already
based on the ball diameter and drop height scaling).
Unless the ambient air plays a crucial role, the depen-
dence on �g must be the reciprocal of the dependence on
TABLE I. Specifications of the granular materials. The den-
sity refers to the bulk material, not the individual grains. The
angle of repose, r, was measured by the draining method [10],
which seems most appropriate for craters; it gives the grain-
grain friction coefficient as � � tanr. The beach sand is the
only significantly polydisperse material.

Material Grain size (mm) �g �g=cm3� r

Sprinkles 2� 7 0.76 39�

Popcorn 4� 6� 7 0.87 34�

Rice 2� 7 0.88 32�

Salt 0.5 1.30 38�

Glass beads 0.2 or 1.0 1.51 24�

Beach sand 0:5� 0:4 1.59 38�
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�b. We have no such guess for behavior vs r. But since
tanr is roughly the coefficient of friction between grains,
it must play a role. To test all this we divide out the
expected �g dependence and plot the results vs tanr in
Fig. 3. The dynamic range is only a factor of 2 for both �g
and � � tanr, so power-law fits give exponents to within
only �0:3. Nevertheless, the data are consistent with D�
��g�

2�1=4 for the crater diameter and d� ��g�
2�1=2

for the crater depth. Comfortingly, the same combination
of material properties appears in both results, and also
leads to a stopping force that is proportional to � (next).

The final crater diameter and depth laws established by
Figs. 1–3 are, respectively,

Dc � 0:92��b=��g�2��1=4D3=4
b H1=4; (2)

d � 0:16��b=��g�
2��1=2D2=3

b H1=3: (3)

Whereas the depth law holds for all our observations, the
diameter law fails for dense balls, �b > 4 g=cm3 (at least
for glass beads— the materials dependence of this break-
down has not been investigated). For a fixed granular
material, the diameter data collapse onto a 1=4 power
law when plotted vs �bD

3
bH (as in Fig. 1); therefore, the

diameter scales with ball energy at impact. By contrast,
the depth data collapse onto a 1=3 power-law when plot-
ted vs �3=2

b D2
bH(not shown—but since the scatter for

depth and diameter is the same in Figs. 2 and 3, the
quality of collapse is also comparable); therefore, the
depth scales as neither ball energy nor ball momentum
at impact. The diameter and depth are separate lengths set
by separate physics.

The crater depth d may be the more fundamental
length scale, in that it naturally relates to the underlying
granular mechanics. Energy conservation, Eq. (1), and
the depth law, Eq. (3), give the average stopping force
acting on the ball as
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FIG. 3 (color online). Scaling of crater size with grain-grain
friction coefficient, � � tanr, for 1-inch diameter nylon ball
dropped into the media specified in Table I. Each point repre-
sents the result of a Dc / H1=4 or d / H1=3 power-law fit to the
size vs H data sets, divided by the labeled combination of ball
and grain densities, ball diameter, and drop height; error bars
are comparable to symbol size.
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Evidently, it can be much greater than the ball weight,
mg, which the granular medium can barely support in a
static situation. These results help constrain the form of
the instantaneous stopping force on the ball throughout
the impact process. If it varies only with ball speed,
independent of depth, then it must scale as F� v4=3.
Alternatively, if the stopping force varies only with ball
depth, independent of speed, then it must scale as F� z2.
Solution of F � ma gives d�H1=3 for both cases.

We now discuss these possible force laws in the context
of the current understanding of granular mechanics.
First, the kinetic theory of granular hydrodynamics gives
a rate-dependent stopping force [11,12]. In Ref. [13] it
was used to analyze the peak height of the granular jet
formed when a heavy ball strikes the medium and be-
comes deeply submerged. There, the viscosity of the
medium is proportional to the shear rate, which scales
as ball speed divided by diameter. This gives a stopping
force of F / �gD

2
gv

2, where Dg is the grain diameter and
the numerical constant is set by the grain-grain restitu-
tion coefficient. This cannot account for our observations,
since the dependencies on grain density, grain size, ball
size, and ball speed are all wrong. Furthermore, a F� v2

drag force is not even strong enough to bring an object to
rest. A modification, whereby the viscosity increases with
packing fraction [14], would be required.

Second, the lateral drag force on an object slowly
pulled through a granular medium at constant depth is
rate-independent, as in plowing a field. Recently it was
found to scale as the product of the object’s cross section
and the hydrostatic pressure at that depth [15]. If this
applies to our work, where the ball moves down rather
than sideways, then the instantaneous drag force is pro-
portional to the weight of displaced grains: F �
��gg��Dbz

2=2 z3=3�. Here z is the depth of the bottom
of the ball, the volume of displaced grains equals the
submerged volume of the ball, and � is a materials
parameter like �. For z � Db, the leading term is F�
z2 and the final crater depth is d � ���b=�g�D2

bH=��1=3.
This is quite similar to our observation, Eq. (3); however
the ball and grain density dependencies are incorrect.
The parameter range in Fig. 2(a) is great enough to easily
rule out d� �1=3

b in favor of d� �1=2
b .

Altogether, it appears that our observation for the
scaling of crater depth, Eq. (3), cannot be explained using
prior work. Friction at the ball surface, collisional granu-
lar hydrodynamics, and the plowing of hydrostatic
grains, are all ruled out. One possible scenario is that as
the ball crashes into the medium, it jams together the
grains underneath. The normal force between these grains
thus becomes much greater than the hydrostatic pressure.
As the ball moves, the grain contacts slide so that each
dissipates a total amount of energy given by the normal
194301-4
force times grain size. New contacts are formed as the old
ones break. This loading and breaking of force chains
gives rise to the dissipation force that ultimately stops the
ball. Another possibility is that dissipation is due to
sliding friction between force chains and the surrounding
unloaded grains. Further work is needed to model either
effect. Perhaps the scaling of crater diameter, Eq. (2),
could then be explained as a consequence of the stopping
force between ball and grains.

We thank R. P. Behringer, S. R. Nagel, and J. A.
Rudnick for helpful suggestions. This material is based
upon work supported by the National Science Foundation
under Grant No. 0070329.

Note added in proof.—A similar experiment has been
reported, in which a steel ball was dropped into glass
beads of varying size [16]. Since the impact energy was
greater, and the granular packing may have been looser,
the ball always became submerged. The crater diameter
scaled as H1=4; the crater depth (measured to the bottom
of the crater, not the bottom of the ball) was about 1=8 the
diameter but increased with H. Striking similarities were
seen in laboratory and planetary crater morphologies, and
in their changes with impact energy.
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