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Complete and precise characterization of a quantum dynamical process can be achieved via the
method of quantum process tomography. Using a source of correlated photons, we have implemented
several methods, each investigating a wide range of processes, e.g., unitary, decohering, and polarizing.
One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional
“ancilla system,” and we have theoretically determined the conditions when AAPT is possible.
Surprisingly, entanglement is not required. We present data obtained using both separable and entangled
input states. The use of entanglement yields superior results, however.
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Quantum information science [1] exploits quantum
mechanics to achieve information processing tasks im-
possible in the classical world. Recent experiments [2]
have reported the implementation of a wide variety of
simple quantum information processing tasks. It is im-
portant to benchmark the performance of experimental
systems as quantum information processing devices: one
promising method, proposed in 1997, is quantum pro-
cess tomography (QPT) [3]. Standard QPT (SQPT) in-
volves preparing an ensemble of a number of different
quantum states, subjecting each of them to the (fixed)
quantum process to be characterized, and perform-
ing quantum state tomography on the outputs. An alter-
native to SQPT, which we refer to as ancilla-assisted
process tomography (AAPT), introduces an extra ancilla
qubit, and involves preparation and tomography of only a
single two-qubit quantum state, rather than four one-
qubit states [4]. As a special case, entanglement-assisted
process tomography (EAPT) describes the situation when
the ancilla is initially maximally entangled with the
system being characterized.

To date, SQPT has been realized in liquid nuclear
magnetic resonance systems [5] while SQPT and EAPT
have been demonstrated in optical systems, but only for
unitary transforms [6]. Here we describe optical imple-
mentations of SQPT, EAPT, and nonentangled AAPT for
a variety of processes, including unitary, decohering, and
non-—trace-preserving (e.g., partial polarizing) opera-
tions. We also report a theoretical result completely char-
acterizing the class of states usable for AAPT. An
equivalent result was independently developed, and was
reported just prior to our own [7].

In SQPT, a quantum system, A, experiences an un-
known quantum process, £. To determine £ we first
choose some fixed set of states {p j} which form a basis
for the set of operators acting on the state space of sys-

tem A, eg., {p;} ={pu pv. pp, pr} for a polarization
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qubit (throughout this paper H, V, D, A, R, and L de-
note horizontal, vertical, diagonal, antidiagonal, right-
circular, and left-circular polarization, respectively).
Each state p; is then subject to the process &, and quan-
tum state tomography [8—10] is used to experimentally
determine the output £(p;). £ is fully characterized if we
determine matrices E;, known as operation elements,
such that E(p) = 3 ; EjpE;f, V p. This representation is
known as an operator-sum decomposition [1].

In AAPT the process £ is characterized by preparing a
single state, o, and then measuring (£ ® I)(o). This
requires an ancilla system, B, with Hilbert space dimen-
sion at least as great as that of A. For an appropriate
initial state, it is possible to characterize £ by preparing
the state o, performing the process £ on system A—
leaving system B completely isolated—and taking a to-
mography of the output (€ ® I)(o). The total number of
measurements is the same in AAPT (16 measurements on
a single 2-qubit state) as in SQPT (four measurements on
each of four input states).

AAPT has advantages over SQPT, most notably being
that preparation of only a single quantum state is neces-
sary for its operation. Consider the possibility of using it
as a diagnostic tool in a quantum computer. When an
unknown effect acts on less than half of a system of
qubits, knowledge of the larger state before and after
the change is sufficient to exactly predict the effect this
change will have on every other state. (Assuming that
the larger state is usable for AAPT—see below). Alter-
natively, SQPT has the advantage that it is generally
easier to produce and measure states with fewer qubits.

We have investigated a variety of dynamical processes,
using the three methods of SQPT, EAPT, and nonen-
tangled AAPT. Our processes operate on the polarization
state of a single photon. We used spontaneous parametric
down-conversion (of a 351-nm pump beam) in a non-
linear crystal (BBO) to create pairs of time-correlated
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photons at 702 nm. For SQPT, by triggering on one
photon, the other was prepared into a single-photon state
[11] with H polarization (Fig. 1). Half and quarter wave
plates converted the horizontal polarization into an arbi-
trary state, thus allowing us to prepare the necessary
input states py, py, pp, and pp. The tomography of the
post-process states was performed by measuring (in co-
incidence with the trigger detector) the Stokes parameters
S] :PH_Pv, SZZPD_PA, and S3:PR_PL, and
performing a maximum-likelihood estimation of the
density matrix [9]. (Here P; denotes a probability: calcu-
lated as the intensity of a state measured in the ith basis
divided by the total intensity.) Typical measurements
yielded a maximum of 13 000 photon counts over 30 sec.

For our EAPT results, two adjacent BBO crystals were
used to prepare the maximally entangled state |¢p~) =
(|HH) — |VV))/v/2 [12]. One of the resulting qubits was
subjected to the given process, and two-qubit tomography
of the pair was then performed by measuring the polar-
ization correlations of the photons with 16 measurements,
e.g., in the following bases: HH, HV, HD, HR, VH, V'V,
etc. [8]. Note from Fig. 1 that the elements used in SQPT
to prepare the single-photon state are now placed (in
reverse order) in the other detection arm, highlighting
the symmetry of the two techniques.

We also performed AAPT using the nonentangled
Werner state py = ¢ + $|y)Xyl, where |y) is a maxi-
mally entangled state. To prepare this state we adjust the
polarization of the pump beam until the down conversion
crystals produce the pure, partially entangled state
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FIG. 1. Experimental arrangements to perform quantum

process tomography. A 351-nm pump is directed through two
0.6 mm-thick BBO crystals, giving rise to pairs of correlated
photons at 702 nm, detected using Si avalanche photodiodes
and fast coincidence electronics. A, B, and C above denote
which elements are present for SQPT, EAPT, and nonentangled
AAPT, respectively. (a) SQPT: Polarizer (P), half-wave plate
(HWP) and quarter-wave plate (QWP) allow preparation of
required pure single photon (conditioned on “‘trigger” detec-
tion) states; identical elements allow tomography of the post-
process states. (b) EAPT: The source produces the maximally
entangled state (|HH) — |VV))/+/2. A two-photon tomography
of the output allows reconstruction of the process. (c) AAPT:
The source produces py ~ &1 + 1|y)Xyl, where |y) is a maxi-
mally entangled state. Although there is no entanglement, the
correlations in py allow AAPT.
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[1/¥6(v2 = DIIHH) +[(¥2 = 1)/V6]IVV) [8]. A half
wave plate at 22.5° in each arm then transforms this
state into |¢) = /1/3|HH) + \/1/6|HV) + \/1/6|VH) +
V1/3VV). Next we pass each photon through a decoherer,
an 11-mm piece of quartz which separates the H and V
components of the polarization by ~100 wm, which is
the coherence length of the individual photons [deter-
mined by the 3-mm diam collection irises and the 5-nm
bandwidth (FWHM) interference filters]. This destroys
all coherence terms in |p) | except for |[HH)XVV| and
|VVXHH|. An additional, shorter decoherer in the idler
arm lowers these terms to achieve a state which has
99.2 = 0.8% fidelity [13] with the above Werner state.
For single-qubit processes, a convenient graphical rep-
resentation plots the transformation of the sphere of all
possible states (e.g., the Poincaré sphere for polarization)
[1], as determined by the action of the process on the set
of basis states, p;. For example, all unitary transforma-
tions are equivalent to a rotation about some axis
[Fig. 2(b)]. Decoherence is represented by a collapsing
of the sphere toward a “‘spindle” [Fig. 2(c)]; for instance,
complete decoherence in the HV basis leaves the states
|H) and |V) unmodified, but transforms the states |D) and
|R) into the completely mixed state at the center of the

FIG. 2 (color). Geometric mappings for three quantum pro-
cesses—i(a) identity, (b) unitary transformation, and (c) deco-
herence—measured using SQPT (left), EAPT (center), and
AAPT (right). The axes are the Stokes parameters (S;, S»,
S3). The colored mesh surfaces show how all pure states are
transformed by the process. The initial states H, R, V, and A are
shown by the green, red, yellow, and blue dots, respectively.
The transformation of initial mixed states (inside the surface)
may be interpolated from the pure state results using the
linearity of quantum mechanics. The mesh coloring denotes
the orientation of the transformed sphere.
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sphere. This graphical approach can even be applied to
lossy processes, e.g., partial polarizers, though it is im-
portant to note that it does not indicate the amount of
loss, only the quantum state of the surviving qubits.

We now outline the general procedure for SQPT, as
described in [3]. Rather than directly determining the
operation elements E;, SQPT relates these to a fixed set of
operators, {E,,}, where E; =%, e;,E, and e;, can be
complex. This allows us to define a single matrix, y, that
fully characterizes the process: if we rewrite the process
as&(p) = > E,.pEl x,m then y is a positive Hermitian
matrix, X, = D €km€r,- See Fig. 3 for examples of
experimentally determined y matrices. To determine y,
we choose a set of basis states {p;}, such that for each
input state p;, state tomography returns an output,
Epj) = Spcipr. If we define E,pEl =3, Bu'p;
(where B is another complex number matrix which
we determine from our choice of input basis states {p;},
output basis states {p,}, and operators {E }), we can see
that > 3., Xmn BR' Pk = Dk CjxPk- independent of p;; B
is invertible; and y,,, = ij(ﬁ_j)ﬂ”cjk.

In our experiment we use {E,,} ={I, o,, oy, 0}, re-
spectively equivalent to the following optical elements:
nothing; a half-wave plate (HWP) at 45°; an optically
active element; a HWP plate at 0°. The diagonal elements
of the y-matrix correspond, respectively, to the probabil-
ity of carrying out the I, o,, o, and o, processes, while
the off-diagonal elements correspond to coherence pro-
cesses of the form opo, and o,p0o,, etc.

We investigated several processes, including the iden-
tity, a unitary rotation, a decoherer, and both a coherent
and an incoherent partial polarizer (see below). The
results for the identity process measure how well the input
state(s) are preserved. We used SQPT, EAPT, and AAPT
to measure the same unitary rotation process (a birefrin-
gent wave plate). The results were in close agreement
[Fig. 2(b)]; the resulting y matrices had an average pro-
cess fidelity [14] between the three methods of F =
(100.4 = 0.8)%. Likewise, the SQPTand EAPT measure-
ments of a decohering process (implemented with a 6.3-
mm piece of quartz) yielded F =(99.9=*0.3)%
[Fig. 2(c)]. The same process, when measured using our
Werner state, appears to be a recoherer—a process which
is not a positive map. This Werner state was prepared using
a thick piece of quartz to temporally separate the H and
V' components of the light, introducing decoherence.

a) Real Imaginary b) Real Imaginary
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FIG. 3 (color online). y matrices determined from EAPT for
(a) unitary and (b) decohering processes, as shown in Fig. 2.
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Consider adding another piece of quartz, with optic axis
perpendicular to the first, after the original. This also
temporally shifts the H and V components of the light,
but in the opposite direction, undoing the original deco-
herence. Our decohering process does exactly this, effec-
tively recohering the Werner state—impossible for a
1-qubit process. The resolution to this paradox lies in
the assumption that the measured process does not act
on any degrees of freedom used to prepare the input state
other than the tested qubit. For example, if frequency is
traced over to prepare a mixed input state, a process that
couples to frequency cannot be measured.

Coherent and incoherent partial polarizers were meas-
ured in order to highlight the role coherence plays in lossy
processes. A glass plate at Brewster’s angle to an incident
beam is a coherent partial polarizer, as the operation of
the plate maintains the preexisting phase relationship
between the horizontal component of the light (com-
pletely transmitted) and the vertical component of the
light (partially reflected). For the incoherent case, con-
sider inserting a horizontal polarizer into the beam 50%
of the time. Half the time only the horizontal component
of the light will be transmitted, but more importantly, the
transmitted light will have no coherence relationship
with the light that does not pass through the polarizer.
For the coherent partial polarizer, pure states remain pure
but slide toward H along the surface of the sphere. In the
incoherent case pure states travel linearly through the
sphere to H, becoming mixed (Fig. 4).

What class of initial states o of the AB system may be
used for AAPT? This question can be answered using an

FIG. 4 (color). Geometric mappings and )y matrices for
(a) coherent and (b) incoherent partially polarizing processes.
The former was implemented using two glass microscope
slides near Brewster’s angle [Ty ~ 88%, T\, ~ 45%]. The lat-
ter was simulated by inserting a horizontal polarizer 50% of
the time. (Real components shown; imaginary contributions
<1%.)
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operator generalization of the Schmidt decomposition for
entangled states [1]. First, we introduce an inner product
on operators, (M, N) = tr(M*tN), and define an orthonor-
mal operator basis to be a set of operators {Mj} such
that (M;, M;) = tr(M;.er) = 8. (For example, an or-
thonormal basis for single-qubit operators is the set
{I/\N2, 0, /2, a'y/ V2, o./ \V2}). The operator-Schmidt
decomposition [15] states that an operator M acting on
AB can be decomposed as M = >, 5;A; ® B;, where the s,
are non-negative real numbers, and the sets {A;} and {B;}
form orthonormal operator bases for systems A and B,
respectively [16]. The Schmidt number Sch(M) of an
operator M is defined [15] as the number of nonzero terms
in the Schmidt decomposition.

A state o of AB may be used to perform AAPT if and
only if the Schmidt number of o is d, where d, is the
dimension of the state space of system A. Consider that in
order to measure the mapping of the entire space, the
input state must possess correlations—represented by the
Schmidt number—between enough states to form a basis
for the mapping. To prove this, expand o in its Schmidt
decomposition as o =>,;5;A;® B;. Assume o has
Schmidt number d3, so that the A; form an orthonormal
operator basis, and s; > 0 for all I. Let ¢’ be the out-
put obtained after letting £ act on system A, that is,
o' =(E® I)(o) =>,5,E(A;) ® B,. By the orthonormal-
ity of the B; and the previous equation it follows that
trg[(I ® Bl)o'] = 5, 5,£(A)w(BLB) = 5,,E(A,,), and so
E(A,,) = trz[(I ® BY)o']/s,,. The fact that the Schmidt
number of o is d3 ensures that s, > 0, so there is no
problem with division by zero. By doing state tomography
on ¢’ and applying the above equation, it is possible
to determine the action of £. The techniques described
earlier can then be used to generate a y matrix or trans-
formed sphere.

Conversely, let £, be the space of trace-preserving
quantum operations on system A, and let S, 5 be the space
of quantum states on system AB. Define a map f:E4, —
Sup by f(€) = (£ ® I)(o). For AAPT, we require that f
be a one-to-one map, i.e., there are never two distinct
operations such that f(&;) = f(&,). A parameter counting
argument shows that f cannot be one-to-one when o has
Schmidt number less than d%. The dimensionality of the
manifold E, is d4 — d}. Since f(€) =Y ,5,E(A;) ® By,
the dimension of the image manifold f(E,) is at most
Sch(M) X (d3 — 1), because the map £ — £(A;) has im-
age of dimension at most d5 — 1. Thus, for AAPT we
require that Sch(M) X (d3 — 1) = d4 — d3, which is only
possible when Sch(M) = d3.

Note that AAPT is possible only when the dimension of
system B is at least as great as the dimension of system A.
When this is true, almost all states of system AB may be
used for AAPT, because the set of states with Schmidt
number less than dﬁ has measure zero. That is, a max-
imally entangled input is not required for AAPT—indeed
many of the viable input states are not entangled at all, as

193601-4

demonstrated by our Werner state AAPT. However, while
almost any state can be used for AAPT, maximally
entangled states appear to be experimentally optimal in
that they have perfect nonlocal correlations. Figure 2
highlights this difference, as the AAPT results have sig-
nificantly greater statistical errors than the EAPT (both
were from identical measurement runs). This comparative
usefulness of entangled versus separable states was first
introduced and is discussed further in [7].
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