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We show that cross-coupling between the geometrical changes and the chemical reaction-diffusion
regimes within a piece of gel embedded in a stationary reactive medium kept far from equilibrium can
destabilize the trivial steady state and lead to spatiotemporal dissipative structures. The involved
physical processes are the spatial bistability and the swelling properties of the gel. As an illustration of
this morphogenetic process, we show that a sphere of gel immersed within such a medium with
autocatalytic properties can exhibit periodic radius pulsations, the amplitude of which are controlled by

chemistry.
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Most rhythms and changes of shape in biological
systems are governed by coupling of a mechanical sys-
tem with chemical processes. A major objective in order
to gain some insight in these phenomena and to de-
vise biomimetics systems is to recognize elementary
mechanisms that can generate self-induced motions in
systems where sustained chemical reactions take place.
Mechanically idle and chemically inert hydrogels are
regularly used as supporting materials for the production
of sustained reaction-diffusion patterns, including trav-
eling waves [1-4], Turing patterns [5-7], or patterns
controlled by front dynamics [§—12]. Most of these sys-
tems are fed with fresh reactants by diffusion from the
gel boundaries. However, some types of gel may exhibit
large volume changes as a function of the chemical
composition of the solvent, e.g., the pH of the solution
[13]. A swelling-deswelling mechanism naturally pro-
vides a coupling mechanism between the chemical pro-
cesses operating within the gel and the geometrical
characteristics of this gel. Recently, it was shown that
oscillating reactions which exhibit large pH variations
can induce periodic volume changes of a piece of poly-
electrolyte gel immersed in the reacting solution [14,15].
A first theoretical model has been proposed by Dewel et al.
[16]. Gel size oscillations were also obtained by making
the Belousov-Zhabotinskii reaction to oscillate within a
gel in which the catalyst was bound to the polymer net-
work [17,18].

In all these experiments, the volume changes were
slaved to the chemical oscillations, whether these occur
in the surrounding medium or only within the gel. All
these reactions can also oscillate in an homogeneous
stirred medium. The mechanical oscillations are forced
by the chemistry without introducing a destabilizing
feedback. However, it has been shown that swelling can
control the transfer of chemicals between two compart-
ments through a gel membrane and facilitate oscillations
in a biochemical reaction [19]. It was also shown that an
elongated piece of gel, immersed in a stationary reactive
medium that cannot exhibit oscillatory dynamics in ho-
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mogeneous conditions, can display complex dynamical
volume and shape changes [20]. It is an important chal-
lenge to find mechanisms by which the cross-coupling
between the volume changes—more generally, geomet-
rical changes—and a nonoscillating chemical reaction
can cause an oscillatory instability leading to periodic
changes of volume or shape. Here we show that the
geometrical parameters can exert such direct feedback
on the chemistry and report calculations on a model self-
oscillatory medium.

In batch reactors, most systems controlled by autoca-
talytic steps present a more or less long induction time
before the reaction speeds up. Consider a piece of gel
immersed in a bath where such a reaction is kept in its
initial stage by a sufficient flow of fresh reactants. If the
size of the piece is small, the diffusive exchanges of the
gel contents with the bath occur in a time shorter than
the induction time so that they remain almost unreacted
everywhere within the gel. If the size is large, the feed of
fresh reactants cannot be sustained in the core of the gel
so that the extent of the reaction is large except within a
boundary layer. However, at intermediate sizes, both
states can be stable since, if a sufficient amount of the
autocatalytic species is initially present within the gel,
the reaction is switched on. Then the extent of the reaction
can remain large, even if the induction time is larger than
the diffusion time. This defines a range of sizes for which
the two states are both stable. We name them the “‘reacted
state” and the ‘“‘unreacted state.” Transitions between
states occur at the bistability limits with hysteresis.
This phenomenon, known as “‘spatial bistability,” has
been extensively studied both theoretically and experi-
mentally [3,4,21-23]. Consider a gel responsive to a
species concentration ¢, which is small in the unreacted
state (large in the reacted state) and assume that the gel
shrinks for large ¢ (swells for small ¢). If we start with a
swollen gel, the size of which is large enough for the
unreacted state to be unstable, the system quickly
switches to the reacted state and the gel begins to shrink.
If the size becomes small enough to reach the lower
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bistability limit, the system switches back to the un-
reacted state. The gel stops shrinking and begins to swell.
If the growing size now reaches the upper bistability
limit, the system returns to the reacted state and shrinks
again. Thus, for an appropriate initial size and a sufficient
swelling-deswelling amplitude, the process repeats indef-
initely, so that the gel exhibits periodic changes of vol-
ume. If the initial shape has a low symmetry, this can also
lead to temporal shape changes.

To illustrate this idea, we solve numerically a model
problem in the case of a spherical gel of radius R. The
reaction involves two species U and V of concentrations u
and v, governed within the gel by the reaction-diffusion
equation (in normalized space units)

ou _ —u?v? + V2y, v _ 1—2u2v2 + Viu. (1)

ot at 7
This system is often used as an oversimplified model of
the chlorite-tetrathionate reaction, where the autocata-
lytic species V is HT, but will be here used as a toy model.
To avoid ambiguities due to long range activation [4], the
ratio of the two diffusion coefficients is fixed to 1. In these
conditions, the reaction can never display oscillations or
excitability. The concentrations in the unreacted sur-
rounding medium will be fixed to uy = 1 and vy = 0.05
at the external radius of the sphere. This system was
shown to exhibit spatial bistability in a flat film [4], but
the extension to a spherical geometry is straightforward.
Solving numerically Eq. (1), one finds that the system is
bistable for R, = 4.48 < R < Ry, = 5.42. The two cor-
responding stable spatial concentration profiles v(r),
where 7 is the distance to the center of the sphere, are
given in Fig. 1 for R = 5. In the reacted state, concen-
tration v is large in the core of the sphere.

Among dynamical approaches of the swelling process
[24-29], we use, with minor adjustments, the theory of
Bisschops et al. [28] and add the effects of the chemicals.
This approach, based on Maxwell-Stefan (MS) equations
[30], retains the essentials for our demonstration, ignor-
ing complexities that would be unnecessary at this stage.
Three types of constituent are considered: the solvent
(the water), the solutes (the chemicals), and the polymer
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FIG. 1. Stable states: spatial dependence v(r). uy = 1, vy =
0.05, R =5.
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(organized in a network). To simplify the expressions, we
do the following series of assumptions. The solutes are
very dilute and their partial volume is negligible. The
volume fraction ¢ of the polymer is small (typically a
few percent in the experiments) so that, for the solutes,
the gel appears as just water, both from the diffusional
and the reactional standpoints. This assumption is com-
monly done without any problem in the study of chemical
patterns. At worst, some constants would be slightly
altered into effective values. To simplify expressions,
one also assumes that a molecule of solvent occupies
the same volume as a monomer. Finally, the dependence
of network properties on a chemical concentration, here
species V, is supposed to be contained only in the energy
of interaction between the solvent and the polymer. The
MS equations assert that at each point within the gel, a
driving force F,o,; = —V(Au) , where A is a generalized
chemical potential including the contributions of the
elastic forces, is equal to the friction force Fy, =
& G(p)(é5 — €p) applied to the solvent molecules, where
&g and €p are the velocities of, respectively, the solvent
and the polymer, and G(¢) is an increasing function of ¢.
This function expresses the hydrodynamic increase of
friction with the polymer density. Taking into account
the spherical symmetry and the so-called ‘“bootstrap”
equation which expresses the mass balance

&s(1 = @)+ &pp =0, 2
one derives the following equation:
. dr,- o 1— ¢ (M_/,L
=G = aa@lor )y @

where r;(r) is the radial coordinate of a given point i
attached to the network [28]. The expression of Au is
given by the classical Flory-Rehner theory where the
pure solvent is taken as the reference to calculate the
mixing chemical potential. The mixing term is given by
Apix = RT[¢ + In(1 — ¢p) + y¢?*] and the elastic term
by Ao = KneaRTL(¢/ 0)'* — (¢/$0)/2)], where con-
stant K, depends on the network properties and ¢y, is the
volume fraction in a reference state. The last term in the
expression of A is controversial and could be dropped
without changing our qualitative conclusions. According
to our former assumption, Ay = A + Ao depends
on the concentration v through the energetic term y =
x(v). For a given uniform value of v, the equilibrium
polymer volume fraction ¢q(v) is the solution of the
equation Ay = 0. In Eq. (3), the function G(¢) is chosen
in agreement with the model of Ogston et al [31]

_ RT
Dy exp(—Kp/¢)’

where the constant K, depends on the geometrical char-
acteristics of the polymer and the solvent, and D, is
the diffusion coefficient of the pure solvent. Given the

G(¢)

“)
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function y(v) and an initially uniform grid of N points
attached to the network, labeled i for 0 =< r;(0) = R, the
evolution of the position r;() of these network points and
concentration distributions u(r, r) and v(r, r) can be nu-
merically computed by integrating the coupled set of
Egs. (1) and (3) in time. The boundary condition is given
by the condition of local equilibrium on the surface of
the sphere in contact with the bath (i = N), i.e., u(ry, t) =
ug, v(ry, 1) = vy and ¢(ry) = ¢eq(vg). The function
x(v, r, 1) is slaved to the distribution v(r, ). The radius
of the sphere is a function of time given by R(z) = ry().
This approach is limited to moderate swelling ratios. For
large swelling ratios, the assumption that the driving
force depends linearly on the gradient of the potential
breaks down. Ignoring this limitation, the form of Ay
leads to an unstable deswelling process. In particular, the
dynamics cannot be properly described when the gel
exhibits a volumic phase transition.

In our computations, the reference state ¢ is taken at
the equilibrium value that corresponds to the composition
in the bath [¢y = ¢eq(v0)], i.e., the value at the boundary.
We have used a sigmoidal function

o (/\/min + /\/max) (/\/max - Xmin)
x() = 5 +
that saturates at large v, as expected when all the sensitive
network sites are activated (or deactivated). The parame-
ters have reasonable values in regard to usual cases. For
clarity, K, and yn;, were chosen so that the equilibrium
at the bath concentration (v = vy = 0.05) is y = yo =
0.20 and ¢ = ¢y = 0.01 (Fig. 2). In Fig. 3, we show the
sphere radius and the concentration v at the center as
functions of time. The former is the signature of the
geometrical (or swelling) state of the gel; the latter char-
acterizes the chemical state (reacted or unreacted). The
initial state corresponds to a sphere of radius Ry = 5.6,
density ¢y, filled with chemicals at concentrations u,
and v,. Since Ry > Ry, the system switches almost
immediately to the reacted state, so that the gel begins
to shrink and R decreases down to R = R;,;. Then the gel
switches back to the unreacted state and starts swelling.

tanh[a(v — v")]
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FIG. 2. Function x(v). Xmin = 0.154, Ymax = 0.54, a = 10,
v* = 0.15. The point corresponds to y = xj.
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The radius increases up to R = Ry, where the system
switches again to the reacted state. The process repeats
indefinitely, giving rise to relaxation oscillations of both
the radius and the chemical composition. Other dynami-
cal information, which will be reported in detail in a
more extensive publication, can be obtained from this
simple model. In particular, the swelling and deswelling
processes are different. During deswelling, although the
highest values of y(v) are located deep in the core of the
gel, a peak of polymer density that signs a high shrinking
level forms inside a shell located close to the boundary. In
fact, it results from Eq. (3) that the steepest changes of ¢
occur close to the maximum of the potential gradient,
which is a complex combination of functions, and not
close to the maximum of y. During swelling, the polymer
density distribution becomes quickly smoother.

We have shown that spontaneous mechanical pulsations
can result from cross-coupling of a mechanically respon-
sive medium with a chemical reaction which cannot
produce oscillations by itself. The destabilization origi-
nates in the feedback of the system size (or geometry) on
the chemical state within the system. The key is the
hysteresis loop associated to the bistability generated by
an autocatalytic reaction [32]. Such reactions are com-
mon in biological media and are observed in numerous
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FIG. 3. Oscillations of the external radius and of concentra-
tion v at center. Dy = 1, Kyt = 6.067 X 107>, Kpy = 5, Xmin =
0.154, Ymax = 0.54, a =10, v* =0.15, uy =1, vy = 0.05,
&y = 0.01, xyo = 0.2. All units are nondimensional.
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other systems. Oscillations in Ref. [20] could enter this
class, although excitability due to differential diffusion
[4] could also play a role. The amplitude of the oscilla-
tions is controlled by chemistry which defines the bist-
ability limits R, and R,,. Alternatively, the hysteresis
loop could be provided by a volumic phase transition [13]
and the feedback by a slow chemical reaction. Then
the amplitude would be controlled by the properties of
the gel. Although our model is adequate to describe the
principles and the basic features of the phenomenon,
improvements could be made in several directions. Many
responsive gels are polyacids and charges are implied in
the swelling. In this case, the transport of charges and,
more generally, the transport in multicomponent systems
should be accounted for [29]. Elasticity forces must be
described explicitly to handle more complex geometries,
such as cylinders or disks. Actually, due to the spherical
symmetry, our model system exhibits only periodic vol-
ume changes, but no shape changes. Without this initial
symmetry, one could expect to obtain stationary or un-
stationary shape changes, opening a new field for natural
or artificial morphogenesis. In the same spirit, the possi-
bility of additional instabilities which could spontane-
ously break the spherical symmetry should be considered.
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