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Increasing d-Wave Superconductivity by On-Site Repulsion
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We study, through the variational Monte Carlo technique, an extended Hubbard model away from
half filled band density which contains two competing nearest-neighbor interactions: a superexchange J
favoring d-wave superconductivity and a repulsion V opposing it. We find that the on-site repulsion U
effectively enhances the strength of J while suppressing that of V, thus favoring superconductivity. This
result shows that attractions which do not involve charge fluctuations are very well equipped against
strong electron-electron repulsion so much to get advantage from it.
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induced by U, but other internal degrees of freedom,
such as the spin (or the orbital index, if orbital degeneracy

techniques and the well established Landau-Fermi liquid
theory should apply.
The interplay between strong correlation and super-
conductivity is one of the major problems raised by the
discovery of cuprate high-Tc materials. Indeed, within the
conventional BCS theory for phonon-mediated weak cou-
pling superconductivity, a strong electron-electron short
range repulsion, parametrized by a Hubbard U, can only
depress Tc. Landau-Fermi liquid theory identifies two
main sources for this reduction; namely, as U increases,
the quasiparticle wave-function renormalization Z � 1
diminishes; meanwhile, the effective mass m� increases.
Thus, each interaction amplitude, including the phonon-
mediated attraction g, acquires a renormalization factor
Z2 times a vertex renormalization. If the latter is negli-
gible, the bare amplitude is reduced to g� � Z2g.
Therefore, as U increases, the dimensionless coupling
which parametrizes the bare attraction, 
0 � �0jgj,
where �0 is the uncorrelated density of states at the
Fermi level, is renormalized into


� � ��jg�j � Z2 m�

m

0 < 
0;

where usually Z � m=m�. On the other hand, the
Coulomb pseudopotential �� increases, so that 
� ���

diminishes even more, pushing Tc down.
By solving a model for alkali doped fullerenes within

dynamical mean field theory, it has been recently argued
[1] that there exist attractive channels for which vertex
corrections may compensate the wave-function renor-
malization factor leading to


0 !
m�

m

0 > 
0;

which may indeed lead to an enhancement of Tc by
increasing U. The main ingredient was identified into a
pairing mechanism not involving the charge-density op-
erator, which is mostly subject to the renormalization
0031-9007=03=90(18)=187004(4)$20.00
is present), unveiling a kind of spin-charge separation
even within Landau-Fermi liquid theory.

This proposal is not far in spirit from the original
resonating valence-bond (RVB) scenario for high-Tc
superconductivity in the t-J model [2]. There, supercon-
ductivity occurs naturally upon doping since the parent
insulating state is well described by an RVB state: the
spin-singlet valence-bond pairs naturally evolve into
Cooper pairs. They can propagate around the lattice
only through the empty sites left behind by the holes.
This constraint easily explains a superfluid density pro-
portional to the hole doping. Moreover, although at small
doping superconductivity is suppressed, the energy scale
associated to the binding energy of the valence-bond
pairs remains finite, which is advocated to explain the
experimentally observed pseudogap phase of high-Tc ma-
terials [3,4].

Within the Fermi liquid framework, the constraint
of no double occupancy appears to renormalize the
quasiparticle hopping to a value Zt ’ 2�t, � being the
doping, while leaving untouched the quasiparticle attrac-
tion, here provided by the superexchange J. The super-
conducting phase of the t-J model can be approached
either from the half-filled antiferromagnetic Mott insu-
lator upon increasing doping or at finite doping by de-
creasing temperature. In both cases, even though the
T � 0 superconductor might still be described in terms
of Landau-Bogoliubov quasiparticles, in the RVB lan-
guage spinon-holon confined objects, the relevant excita-
tions above Tc or in close vicinity to the half-filled
antiferromagnet do not necessarily look like conven-
tional quasiparticles.

For this reason, in this work we try to understand
whether this strongly correlated d-wave superconductor
can be approached at zero temperature starting from a
weakly correlated regime, where standard many-body
 2003 The American Physical Society 187004-1
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We consider an extended Hubbard model in two di-
mensions for the average number of electrons per site 1�
� < 1, namely, away from half filling,

ĤH � �t
X
hiji

X
�


cyi�cj� � H:c: �U
X
i

ni"ni#

� J
X
hiji

�
~SSi � ~SSj �

1

4
ninj

�
�V

X
hiji

ninj; (1)

where, in addition to the on-site repulsion, we add a
nearest-neighbor spin-exchange and a charge-repulsion
term, with strengths J and V, respectively. These near-
est-neighbor interactions compete, J favoring a d-wave
singlet pairing away from half filling and V opposing it.
For V � 0 and U strictly equal to 1, (1) reduces to the
standard t-J model, which also corresponds to the large U
limit of the pure Hubbard model, in which case J !
4t2=U. However, contrary to the latter, model (1) for J >
V is undoubtedly a d-wave superconductor at weak
coupling (U, V, and J all much smaller than t) also within
the Hartree-Fock approximation. For this reason,
model (1) is more suitable to address the issue of elec-
tron-electron correlation effects on d-wave superconduc-
tivity. Moreover, since V involves charge-density while J
involves spin-density operators, the presence of both
gives one the opportunity to test if U indeed induces
different renormalization factors on charge with respect
to spin vertices.

A variational approach which was shown to correctly
reproduce both the weak [5] and the strong [6] coupling
limits of the Hubbard model appears well suited for
model (1) too. It consists in searching by the variational
Monte Carlo (VMC) technique for the best wave function
of the form

j�i � AP̂PNP̂PJastrowP̂PGj�BCSi; (2)

where A is a normalization factor, j�BCSi a BCS wave
function [7] projected by P̂PN onto a fixed number of
particles, with a d-wave gap function �k � �var
coskx �
cosky, �var being a variational parameter. P̂PG is a
FIG. 1. Variational gap as a function of U for different val
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Gutzwiller projector:

P̂PG �
Y
n


1� �0nn;"nn;#; (3)

whereas P̂PJastrow a long-range Jastrow factor which en-
forces the correct long-wavelength behavior of the den-
sity structure factor:

P̂PJastrow � e��1

P
hiji

ninj��2

P
hhijii

ninj�...; (4)

where ‘‘. . .’’ stands for the summation over next, next-
next, etc., nearest-neighbor sites (i.e., all those possible on
a finite size sample).

The method is based on the stochastic reconfiguration
technique [6], which allows one to minimize the energy
of a variational wave function containing even a large
number of parameters.

To get further insight from the numerics, we compare
the results with those obtained by the Gutzwiller approxi-
mation (GA) [8,9] for the variational wave function with-
out both the long-range Jastrow factors and the projector
onto a fixed number of particles.

In Fig. 1 we plot the variational parameter �var as a
function of U for J � 0:2t, � � 0:16, and for different
values of V. For J > V, �var starts finite at U � 0 and
increases with U. For V > J, �var � 0 at small U, in
agreement with the Hartree-Fock results. More remark-
ably, above a critical Uc a finite �var appears. Namely, the
normal metal at V > J turns into a superconductor by
increasing the on-site repulsion. Both results can be ex-
plained within the Fermi liquid picture provided by the
Gutzwiller approximation, according to which the effec-
tive J� acting between the quasiparticles stays essentially
unrenormalized when U increases, contrary to the effec-
tive V�, which is substantially suppressed with respect to
its bare value V. Therefore, as U increases for J > V, the
quasiparticle bandwidth gets reduced, the attraction stay-
ing unrenormalized, so that the dimensionless coupling

� increases, hence �var. If J < V, a normal metal is
stable until V� > J� ’ J, after which superconductivity
ues of V within (a) variational Monte Carlo and (b) GA.
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gets in. In our numerical study we found that the inclusion
of the long-range Jastrow factor (4) considerably im-
proves the simpler Gutzwiller wave function and allows
larger values of �var. However, as shown in Fig. 1(b)
the qualitative behavior of �var vs U is reproduced
already by GA.

Within the GA it is possible to study explicitly the
competing influence of both J and V on superconductiv-
ity. Let us consider the superconducting contributions to
the uncorrelated expectation values for nearest-neighbor
sites i and j,

h�BCSjninjj�BCSiSC � 2�2
SC; (5)

h�BCSj ~SSi � ~SSjj�BCSiSC � �3
2�

2
SC; (6)

where �SC � jh�BCSjc
y
i�c

y
j��j�BCSij is the order parame-

ter of the uncorrelated wave function. In the case of
Eq. (5), this term derives from configurations in which i
and j are both singly occupied, both doubly occupied, or
one singly and the other doubly occupied, with weights
�2, 
1� �2, and 2�
1� �, respectively, where � is the
doping. On the contrary, Eq. (6) has contribution only by
configurations where both sites are singly occupied. In the
limit of very large U, the configurations with doubly
occupied sites are projected out; hence, only the contri-
butions from singly occupied sites survive in Eqs. (5) and
(6). This implies that (5) gets a reduction factor �2 rela-
tive to (6), so that the actual condition for superconduc-
tivity at U ! 1 reads approximately

3
4J > �2
V � 1

4J:

Since, in the same limit, the wave-function renormal-
ization Z ’ 2�, we indeed recover the desired Fermi
liquid result that interactions involving the charge-
density operators get renormalized down by a factor Z2

with respect to those involving spin operators. The above
discussion also shows that not all the pairing mechanisms
FIG. 2. (a) Superconducting order parameter �LRO and (b) the va
0:16. The inset in (a) shows the long distance pairing correlations
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are equally equipped against on-site repulsion. Indeed, a
weak coupling d-wave superconductivity might be stabi-
lized even by a negative V at J � 0: an explicit attraction
between charges. However, for increasing U, the effective
strength of this attraction would decrease as Z2 so that

� � Z
0; hence, Tc would go down.

The behavior of the variational gap �var as shown in
Fig. 1 suggests a crossover from weak to strong coupling
superconductivity as U increases. This is manifested by
comparing Fig. 2(a) with Fig. 2(b). In the latter the varia-
tional energy gap is displayed for several U’s, while in the
former we plot the true long-range order (LRO) parame-
ter �LRO in the correlated wave function. �LRO is esti-
mated on a finite cluster through the pair-pair correlation
function f as follows:

�LRO � 1
2

��������������������
f� fnorm

p
;

where

f �
X
�;�0

hcy~xx;�c
y

~xx� ~11;��
c~yy� ~11;��0c~yy;�0 i; (7)

being evaluated around the maximum distance j ~xx � ~yyj
available on a given size. Notice that f includes normal
contributions fnorm, which nevertheless vanish in the
infinite size limit. In order to improve the quality of any
finite size analysis, one should estimate fnorm to get a
meaningful value of the true long-range order parameter.
We decided to approximate fnorm by the value of f calcu-
lated with the optimized wave function having the same
form (2) with the variational parameter �var equal to zero
[see inset in Fig. 2(a)]. After this subtraction, size effects
are acceptable, at least for our qualitative analysis [see
Fig. 2(a)].

The crossover region where the gap �var rapidly moves
from small BCS-like values to much larger values corre-
sponds to a maximum of the true order parameter, as one
would expect in the intermediate region between weak to
riational gap �var as a function of U at V � 0, J=t � 0:2, � �
for the nonsuperconducting state (see text).
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FIG. 3. (a) Wave-function renormalization Z as calculated through the jump in the momentum distribution along the nodal
direction. Finite size scaling from 50 to 162 is used to evaluate the jump Z in the thermodynamic limit for the VMC.
(b) Quasiparticle bandwidth normalized to its uncorrelated value. The VMC refers to the 50-site cluster, as finite size effects
are small. V � 0 and J=t � 0:2 for both figures.
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strong coupling superconductivity. The notable difference
with the latter is that in our model the crossover does not
occur by varying the bare attraction 
, but by increasing
the repulsion U.

The different behavior of the variational gap with
respect to the true order parameter, which has been
associated with the behavior of the pseudogap versus Tc
in the cuprates [3,4], has a clear explanation within the
GA, where �LRO is suppressed by the factor Z with
respect to the uncorrelated �SC. Indeed, as shown in
Fig. 3(a), the quasiparticle residue Z, defined as the
jump in the momentum distribution function along the
nodal directions, is a decreasing function of U tending to
Z� 2� as U ! 1.

However, as shown in Fig. 3(b), Z is not the reduction
factor of the full quasiparticle bandwidth, which gets
contributions also from J and V. Again, this is an obvious
result in the GA where the Hartree-Fock decoupling of
the nearest-neighbor interactions effectively generate
hopping terms. In spite of that, the charge current vertex
is still determined by the true hopping t, and hence
gets suppressed by a factor Z ’ 2�. On the con-
trary, spin current vertex does include a contribution
from J and survives against the strong wave-function
renormalization Z.

In conclusion, we have shown that strong short range
correlations enhance or suppress pairing correlations if
they primarily involve spin or charge degrees of freedom,
respectively. This behavior is manifested at strong U, in
agreement with slave boson approaches [10] and numeri-
cal calculations [3,4,11], but starts to appear already at
weak coupling. Indeed, a recent calculation within the
random phase approximation [12] shows that the d-wave
superconducting phase of model (1) at V � 0 gains more
exchange-correlation energy than a normal metal, thus
187004-4
supporting the results here obtained by the variational
Monte Carlo technique.
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Note added.—When this work was completed, we be-
came aware of a preprint by Zhang [13] which considers
the Hamiltonian (1) with V � 0 within the GA, in the
context of the gossamer superconductivity scenario re-
cently proposed by Laughlin [14]. The results of Ref. [13]
qualitatively agree with our VMC data.
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