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Zonal Flows and Transient Dynamics of the L-HTransition
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We elucidate the role of zonal flows in transient phenomena observed during L-H transition by
studying a simple L-H transition model which contains the evolution of zonal flows, mean E�B flows,
and the ion pressure gradient. Zonal flows are shown to trigger the L-H transition and cause time-
transient behavior through the self-regulation of turbulence before a mean shearing, due to a steep
pressure profile, secures a quiescent H mode. Surprisingly, this self-regulation lowers the power
threshold for the ultimate transition to a quiescent H-mode state.
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tuations, etc. Thus, mean and zonal flows are likely to
play quite different roles in the L-H transition.

flows (see below) and covers the entire dynamics of the
L-H transition (from an L mode to a quiescent H mode)
The confinement of particles and heat in magnetically
confined fusion devices degrades as an input power is
ramped up. This is not unexpected since the input power
is stored as free energy in background (e.g., density and
temperature) profiles, which is then released by various
microinstabilities. These microinstabilities cause anoma-
lous transport, thereby degrading confinement. What is
surprising is that as an input power is further increased
beyond a critical value, plasmas organize themselves into
a high confinement state (H mode) by the formation of
transport barriers in the plasma edge (or core). This
transition from low to high confinement (the so-called
L-H transition) seems to be universal, reproduced in most
fusion devices [1] since its first discovery in ASDEX [2].
Since an H mode is an ideal operational regime for future
reactors, a detailed study of the L-H transition remains a
crucial issue in fusion theory. The importance of a trans-
port barrier is not limited to magnetically confined plas-
mas but has also been widely recognized in other systems
such as geophysical, atmospheric sciences, etc. [3].

One of the most convincing explanations for the L-H
transition is the suppression of turbulence by E� B flow
shearing [4]. This shear suppression can occur by mean
E�B flows hVEi and/or by zonal flows ~VVE. While mean
E�B flows were initially thought to be responsible for
the turbulence suppression, recent studies revealed a cru-
cial role of self-generated zonal flows in regulating tur-
bulence [5,6]. Compared to mean E� B flows, zonal
flows possess fine spatial structure with a finite, but small,
frequency, with their shearing rate being proportional to
h�@r ~VVE�

2i1=2 [7]. Because of their small spatial structure,
the shearing due to zonal flows is likely to dominate that
due to mean flow before the amplitude of the mean flow
becomes sufficiently large due to profile steepening (i.e.,
before and during the L-H transition). Note that zonal
flows are excited solely by fluctuation-driven Reynolds
stress, while mean E�B flows are driven by mean
pressure gradient and poloidal and toroidal flows, which
can be generated by external sources, as well as by fluc-
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In this Letter, we study the role of zonal flows and
transient dynamics of the L-H transition. To this end, we
propose a concrete model for the L-H transition, which
contains the essential physics of mean flows, zonal flows,
and the ion pressure profile, and which treats the interplay
between mean and zonal flows. Through this model, we
explicitly show that zonal flows (i) trigger the transition
by regulating turbulence via shearing and (ii) cause the
observed time-transient (oscillatory or bursty) behavior
before the system evolves into a quiescent H mode due to
the buildup of a strong mean shearing. The oscillatory
behavior near the L-H transition, such as dithering in
ASDEX Upgrade [8], IM-mode in DIII-D [9], etc., has
been known for some time, stimulating many workers to
propose numerous different models. For instance, a limit
cycle oscillation between L and H states related to the
bifurcation curve structure was proposed in [10], while
the self-regulation of a poloidal flow was invoked in [9].
Note that most previous works on this issue envisioned the
self-regulation of turbulence as originating from mean
poloidal or toroidal flows which are self-generated by
Reynolds stress [11]. However, Reynolds stress drive for
mean flows is likely to be very weak as compared to that
for zonal flows, due to the larger scales of the former.
Thus, the self-regulation of turbulence (causing time
transience) is more likely to occur by zonal flows than
by mean flows. The importance of zonal flows in the L-H
transition was experimentally demonstrated only re-
cently, through bicoherence analysis on DIII-D experi-
mental data [12]. Reference [12] clearly demonstrated
enhanced nonlinear coupling between low and high fre-
quency modes before and during the L-H transition, as
well as the eventual disappearance of this coupling after
the L-H transition when high frequency modes (which
drive low frequency modes) are quenched. Note that these
low frequency modes are most likely to be zonal flows.
Another distinguishing feature of our model is that it
treats the interplay between zonal and mean flows,
namely, the inhibition of zonal flow growth by mean
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by the incorporation of a pressure profile evolution, in
contrast to Ref. [9].

Before presenting our model, we illustrate the inhibi-
tion of zonal flow growth by a mean flow in the case of
simple drift wave turbulence. The reponse of drift wave
spectrum ~NNk to a seed zonal flow ~VVE of wave number q is
given by the following linearized wave kinetic equation:

@
@t

~NNk � iqvgx ~NNk �

k�hV 0
Ei

@
@kr

~NNk � � ~NNk 	 iqk� ~VVE
@
@kr

hNki: (1)

Here, Nk 	 �1� �2
sk2�2j�0

kj
2 is the drift wave quanta

density, �0 is the electric potential of drift waves, � and
�! are the linear growth and nonlinear damping rates
(�hNki 	 �!hNki

2), and vg is the group velocity (in the
moving frame with E� B velocity) of drift waves. To
explicitly incorporate the effect of hVEi on ~NNk, we define a
total time derivative Dt 	 @t � k�hV 0

Ei@kr and solve
Eq. (1) along a nonperturbed, shearing ray orbit from
an initial time t0 to final time t as
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00�
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where �t� t0�� � 1 was used. By realizing that Dtkr 	
�k�hV0

Ei, one can easily see that the shearing by a mean
flow enters into vgx and @hNk�kr�t0��i=@kr�t0�. In the limit
where the mean shearing occurs on a time scale larger
than other dynamical time scales (i.e., 1=�, 1=vgxq,
and 1=	), we can approximate @hNk�kr�t0��i=@kr�t0� �
@hNk�kr�t��i=@kr�t�. Then the substitution of the time
dependence of expf�i	tg for ~NNk and ~VVE simplifies
Eq. (2) to

~NN k�q;	� � iqk� ~VVER
@hNki

@kr
: (3)

Here, the real part of R becomes

Re�R� �
1

�

�
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12q2hV 0
Ei

2!2
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�
; (4)

for k?�s < 1 and � > qvgx > 	. Here, ! 	 !�=
�1� �2

sk
2� is used (!� 	 k�cs=Ln is the ion drift fre-

quency). Note that the sign of Re�R� is positive since
Eq. (4) is derived in the limit of weak mean shear. By
coupling Eq. (3) to the evolution equation of zonal flows
�	~VVE�q;	�=q 	

R
d2kk�kr ~NNk�q;	�=�1� �2

sk2�2, we
obtain the frequency of zonal flows 	 as

	� iq2
Z
d2k

k2�kr
�1� �2

sk2�2
R
�
�
@hNki
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�
: (5)

Equations (4) and (5) clearly demonstrate that a mean
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shear flow inhibits the growth of zonal flow. This inhibi-
tion is essentially due to the weakening of the response of
drift wave spectrum to a seed zonal flow via the enhanced
decorrelation of drift wave propagation by a mean shear
flow. This result, obtained in a weak shear limit, will
certainly apply to a strong shear case and thus will be
used in the following model for the L-H transition.

Our model is based on zero-dimensional (0D) envelop
equations, consisting of the amplitudes of turbulence E,
zonal flow shear VZF / @r ~VVE, mean flow shear V /
@rhVEi, and the gradient of a (ion) pressure N / @rpi:

@tE 	 EN � a1E2 � a2V2E � a3V2
ZFE; (6)

@tVZF 	 b1
EVZF

1� b2V2 � b3VZF; (7)

@tN 	 �c1EN � c2N �Q: (8)

Here, ai, bi, and ci are model-dependent constants, whose
values may be found in [11]. The exact form of these
constants is not pertinent to the qualitative discussion
of this Letter and will be given in detail in future pub-
lications, as a part of a comparison with specific experi-
mental results. Equation (6) describes the evolution of
turbulence: the first term on the right-hand side represents
its generation by pressure gradient via linear instability,
the second nonlinear saturation of turbulence, and the
third and last terms shear suppression of turbulence by
mean E�B flows and zonal flows, respectively. Note
that a2 ’ a3 in the limit where the frequency of zonal
flows is much smaller than the decorrelation time of
turbulence [13]. The first and second terms on the right-
hand side of Eq. (7) illustrate the generation of VZF by
Reynolds stress and zonal flow damping, respectively.
Note that the growth inhibition by a mean shear, which
is valid even for a strong shear, is modeled by a term
1=�1� b2V

2�. The three terms on the right-hand side of
Eq. (8) represent, from the left, the turbulent diffusion of
the pressure profile by turbulence, neoclassical transport,
and input power. By assuming a constant ion temperature
profile and by ignoring mean toroidal and poloidal flows,
for simplicity, the above set of equations is to be closed by
the following approximation to the ion momentum bal-
ance equation:

V 	 dN 2: (9)

The control parameter of Eqs. (6)–(9) is the input
power Q. As the input power Q is increased from below,
the mean pressure gradient becomes steeper and excites
turbulence.When the turbulent drive becomes sufficiently
strong to overcome flow damping, it generates zonal flows
by Reynolds stress. Turbulence and zonal flows then form
a self-regulating system as the shearing by zonal flows
damps the turbulence. A signature of this self-regulation
is manifested in the time-transient (oscillatory or bursty)
185006-2
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behavior of the system [6,14,15]. Note that oscillatory
behavior can originate from other causes [10]. For a
sufficiently high Q, this self-regulation turns off the
turbulence, and subsequently zonal flows are depleted
by a mean shearing, and the system evolves into a quies-
cent H mode,

E 	 VZF 	 0; N 	
Q
c2
: (10)

Here, the slope of the profile is determined by neoclassi-
cal transport. This quiescent H mode will eventually
terminate upon the further increase of gradients when
MHD instability sets in. This regime, however, is not
discussed in the present Letter. What is the effect of
mean flows on zonal flows in this scenario? Since the
mean flow inhibits the growth of zonal flows, it weakens
the damping of turbulence by zonal flows. Therefore, it
will prolong the oscillatory phase, leading to a slight
increase in the critical input power Q needed to achieve
the quiescent state, as compared to the case where this
effect is ignored.

The foregoing expectation is now confirmed by the
numerical solution of Eqs. (6)–(9). We assume Q 	 1:0�
10�2t (t is time) and constant values for parameters ai, bi,
ci, and d and study how the system evolves into a quies-
cent H mode. The results are plotted in Fig. 1 which shows
the evolution of E (solid line), VZF(dotted line), and N =5
(dashed line). Clearly there are three distinct stages. The
early stage is characterized by growing turbulence (by
linear instability from increasing N ), followed by rap-
idly growing self-generated zonal flows. As the shearing
by zonal flows becomes sufficient to damp turbulence, the
system self-regulates, entering into a transition regime,
where zonal flows and turbulence compete and exhibit
oscillatory behavior: E and VZF grow as they draw energy
from N and E, respectively, while E and N damp on
FIG. 1. Evolution of E (solid line), VZF (dotted line), and
N =5 (dashed line) as a function of input power Q 	 0:01t.
Parameter values are a1 	 0:2, a2 	 a3 	 0:7, b1 	 1:5, b2 	
b3 	 1, c1 	 1, c2 	 0:5, and d 	 1.
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account of growing VZF and E, respectively. Notice in
Fig. 1 that in addition to oscillation, there is a gradual
increase in E. As noted previously, this is due to the
reduction in the zonal flow growth by the mean shear
flow, which promotes the growth of turbulence. A slight
decrease in the amplitude of oscillation is due to non-
linear damping of drift waves (a2E2). The behavior of this
envelope is given by a stationary solution E 	
b1�1� b2V

2�=b3 [see Eq. (7)], which increases as the
profile steepens (V 	 dN 2). The final stage of the evo-
lution (i.e., a quiescent H mode) is marked by the com-
plete damping of turbulence and zonal flows due to strong
mean flow shearing for sufficiently large Q. At this stage,
the profile steepens linearly with Q, consistent with
Eq. (10).

To demonstrate that the inhibition of zonal growth by a
mean shear flow [term with b2V

2 in Eq. (7)] prolongs the
oscillatory transition phase, we plot the results obtained
with b2 	 0 in Fig. 2, using the same parameter values as
in Fig. 1. Note that in this case the oscillation of E is about
a roughly constant value, in contrast to Fig. 1. This
constant value is again given by a stationary solution E 	
b3=b1 	 2=3 with b2 	 0 [see Eq. (7)].

Since zonal flows regulate turbulence before the tran-
sition to a quiescent H mode, they trigger the transition
by lowering the power threshold, relative to the case
without zonal flows. This important effect can clearly
be seen in Fig. 3, which represents the evolution of E
(solid line) and N (dashed line) for the same parameters
as in Fig. 1, but with VZF 	 0; i.e., the turbulence ampli-
tude is too large to reach a quiescent H mode for the
values Q up to 2; the transition will occur at a higher
value, i.e., Q > 2. For comparison, the Q dependence of E
and N in Fig. 1 are superimposed by dotted and dash-
dotted lines, respectively, in Fig. 3.

A detailed test of the role of zonal flows in the L-H
transition and identification of the origin of the oscilla-
tory behavior remains a challenge to experimentalists.
FIG. 2. The same as Fig. 1 besides b2 	 0.
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FIG. 3. Evolution of E (solid line) and N (dashed line) as a
function of input power Q 	 0:01t with VZF 	 0. Parameter
values are the same as Fig. 1. For comparison, E (dotted line)
and N (dash-dotted line) in Fig. 1 are superimposed.
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First of all, a careful control over the input power ramp-
ing is necessary, since the duration of the transition
regime sensitively depends on the rate of input power
ramping — too rapid ramping shrinks this regime to an
arbitrary short time interval, smaller than that of the
experimental time resolution. Second, the distinction be-
tween mean poloidal and zonal flows should be made
experimentally. A recent experiment on DIII-D [9] suc-
cessfully resolved a time-transient regime (IM mode) by
slowly increasing the input power. However, the time-
transient behavior was interpreted to originate from a
self-generated poloidal flow, without clear identification
of the latter. In our model, the zonal flow is the main
source of a poloidal flow, in view of the weak Reynolds
stress drive for mean poloidal flow. Note that our model
provides a concrete route leading to a quiescent H mode
by a pressure profile steepening, unlike that of Ref. [9].

In summary, we have proposed and studied a self-
consistent 0D model for the L-H transition, by incorpo-
rating the effect of zonal flows. The uniqueness of this
model lies in the synergy of the evolution of zonal flows,
mean E� B flows, and mean pressure profile, which
permits a qualitative study of the dynamics of the tran-
sition deep into the quiescent H mode as the input power
is ramped up. The key results are (i) that zonal flows
trigger the L-H transition, causing time-transient behav-
ior, before the system evolves into a quiescent H mode by
a steep pressure gradient for a sufficiently large input
185006-4
power, and (ii) that mean shear flow, through zonal flow
growth inhibition, causes a prolonged duration of the
oscillatory transition phase and a slow rise in the enve-
lope of the oscillation. A quantitative comparison with
specific experimental data requires the computation of
model-dependent constants (ai, bi, ci, and d) as well as
the relaxation of the assumption of a constant ion mean
temperature. Ultimately, it is necessary to extend our
model to 1D to study the location and propagation of
transport barrier (pedastal). This is particularly interest-
ing since the role of zonal flows in the dynamics of
transport barrier is largely unknown. It seems reasonable
to hypothesize that the local zonal flow spectral density
must be incorporated into barrier dynamics models, along
with the local fluctuation intensity. These issues will be
discussed in future publications.
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