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The renormalization-group approach is applied to derive an exact solution to the self-consistent
Vlasov kinetic equations for plasma particles in the quasineutral approximation. The solutions obtained
describe three-dimensional adiabatic expansion of a plasma bunch with arbitrary initial velocity
distributions of the electrons and ions. The solution found is illustrated by the examples on ion
acceleration in a plasma with hot electrons and in a plasma with light impurity ions.
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Theoretically plasma expansion into a vacuum has
been studied for almost 40 years, since the work by
Gurevich et al [1]. However, until the last decade this
problem has been treated only by using hydrodynamic
models [2]. In the 1990s the kinetic aspects of plasma
expansion already prevailed. The latest developments in
the kinetic theory of plasma expansion aim to better
understand ion acceleration in an expanding collisionless
plasma bunch heated by an ultrashort laser pulse. Kinetic
treatment of this problem is based on a solution to the
Cauchy problem for the coupled Vlasov equations for
electrons and ions in a self-consistent electric field. We
emphasize that the physics of such an expansion differs
from the physics of a semi-infinite collisionless plasma
expansion [3—5] where the isothermal regime is enabled
because of an infinite source of plasma energy. In an
expanding plasma bunch, both the electrons and the
ions cool adiabatically as their thermal energy transfers
to the kinetic energy of the plasma expansion.

Simulations [6,7] have demonstrated the regime of
plasma expansion which is characterized by electrons
cooling in time. Moreover, these simulations have proven
the existence of self-similar solutions to the kinetic equa-
tions. Later, a number of self-similar kinetic solutions
have been found analytically [8—10]. An important step
in the analytical three-dimensional kinetic theory of
plasma bunch expansion with adiabatic cooling of the
particles has been taken in Ref. [11]. An exact self-similar
solution to Vlasov equations [11] describes the particular
case with quadratic dependence of the electrostatic po-
tential on the coordinates. Correspondingly, the initial
conditions imply the same dependence of the distribution
functions (DFs) on the coordinates and velocities. A more
general class of kinetic solutions was found in the one-
dimensional case in Ref. [10]. It was derived for arbitrary
initial DFs by applying the renormalization-group ap-
proach, in which the solution to the initial-value problem
is found perturbatively for ¢t — 0 and is continued in time
using the renormalization-group symmetries (RGS). The
theory [10] gives in analytical form the DFs for electrons
and ions in the expanding plasma foil for initial condi-
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tions of practical interest for laser-plasma interaction.
This includes a two-temperature Maxwellian electron
DE a super-Gaussian electron DFE and a plasma with ion
multispecies. Clearly, the great advantage would be the
generalization of this theory to the three-dimensional
case. In this Letter we present such a theory.

Progress in the application of the RGS method [12]
makes it now possible to routinely use it for different
problems in laser-plasma interactions [10,13,14]. We apply
this method to the Cauchy problem for the Vlasov equa-
tions

atfa + (vv)fa - (ea/ma)(vq))vvfa = 0
[l = frv). (D)

Particle DFs f, (¢, r, v) for the electrons (o = e) and ions
a =1, 2,...) are assumed to satisfy the quasineutrality
conditions,

f dvY e, f* =0, f dvv) e, f* =0, (2

identical to those used in Ref. [11]. The electric potential
is expressed in terms of the DF moments:

VO = —fdvgeav(w)fa{fdvg;—ifa}_l. 3)

The key idea of our approach is to find the RGS providing
an invariance of the solution to the initial-value problem
fort— 0: f* = F(t,r,v) = f§(r, v) + O(1) and to find
the finite transformations which extend this solution to
the solution for ¢t > 0.

The RGS can be found as a subgroup of the group of
point Lie transformations which is admitted by Eqgs. (1)
and (2). The corresponding infinitesimal operators,
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arise as a generalization of the previously obtained results
for the one-dimensional case [10]. Here Z,, = ¢,/ |e| and
the index « + 1 denotes the particle species which fol-
lows species «. The number of generators X, is one less
than the number of plasma components.

To find the RGS one should pick a linear combination
from the set of operators (4) to provide the solution found
with perturbation theory for # — 0 to be invariant. This
leads to specific restrictions on the form of initial DFs.
We consider a particular RGS generator as the linear
combination of two generators X, and X; from Egs. (4),

R=(1+Q22)a, + Q*tro, + Q>(r — v1)d,, ()

with the constant (). This is the only operator which
selects the spatially symmetric initial DFs. The value ()
can be treated as the ratio of the ion acoustic velocity to
the gradient length L,. Such a solution is the particular
one from the entire class of solutions to the initial-value
problem which can be found by using the generators (4).
For instance, a linear combination of the generators X,
X5, and Xik gives rise to asymmetry in space for the
solutions. However, this paper examines the possibility
of using the latest developments in the RGS theory for
particle kinetics and is not intended to be comprehensive,
but rather to be restricted to a discussion of some new
symmetric solutions.

The operator R (5) defines transformation of the phase
space (r/, v') at r = 0 to the phase space (r, v) at r > 0 as
follows:

r

V1+ Q22

/

r’' = v? + Q%42 = v + Q% (r — vt

(6)

The DFs are invariants of the renormalization-group
transformations, i.e.,

fe=feae), 1« = %(v’2 +Q%r?) + ;—“(I)O(r’). (7
Equations (6) and (7) explicitly define the sought-for
finite group (renormalization-group) transformations so
that the DFs at the given time, ¢ # 0, can be expressed in
terms of their initial values.

To find the symmetry group, which is admitted by
Egs. (1) and (2), the electric field E(z, r) is considered to
be an unknown function of coordinates and time.
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Computation of this group leads to a partial differential
equation of first order for the electric field. Corre-
spondingly, the solution for the electric potential is given
by

O(t,r) = Dy(r(1 + Q22)7 1. (8)

The dependence of @, on self-similar variable r' =

r/v1 + Q?# is defined by the quasineutrality condition
(2). Equations (6) and (7) present the entire class of the
spatially symmetric solutions which include the original
Dorozhkina and Semenov model [11] as one particular
case.

The general form of the DFs, f¢, is a function of /¢

Vi + (v —u)? N ea(I)>’ ©)

2 m,

2
1* = % +(1+ ta2)<

where v is the radial component of particle velocity v,
v, is the perpendicular one, u = rtQ?/(1 + Q?#) is
the local plasma velocity along the radius, and U =
rQ/~/1 + Q%1%. Because both the kinetic equations and
the quasineutrality conditions are invariant with respect
to the renormalization group of point transformations,
the solutions found satisfy the quasineutrality conditions
at an arbitrary time, if they satisfy them at the initial
time. We further illustrate the plasma expansion with two
basic examples of practical interest.

Example 1.—At the initial time ¢ = 0, the ions are
assumed to obey a Maxwellian DF with density n,, and
temperature 7; and the electrons obey a two-temperature
Maxwellian DF with densities and temperatures of the
cold and hot components n.y and n,y (n. + nyy = Zn,g)
and T, and T}, respectively. In this case the DFs may be
expressed as

Zn; ¢/h2 T, \3/2 _jese
e i0 1— -1 /UTF + <_e> I°/vs :|
) -1/}, » _Ta _ Mo
! Q7 v3., ’ VTa m,’ Zny’

2

®
~Paroy+ Y (10)
T, 2v7,

where the potential ® is defined in the implicit form
U2

T,
—c_ i _ 1-T,/T))E
2 ¢ T,»+ZTeln(1 p ot pel 7T, (D)

and ¢, = +/(T; + ZT,)/(m; + Zm,) is the ion acoustic
velocity. This example may serve as a model for the
expansion of a plasma bunch which was rapidly heated
by a short laser pulse with significant conversion effi-
ciency of laser energy to hot electron energy.

Example 2—This is an expansion of a plasma bunch
with different ion species having Maxwellian DFs. This
example may shed light, in particular, on the role of a
small number of impurity ions. Such a problem was the
subject of previous research on plasma expansion into a
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vacuum [15]. It is of current interest because of ongoing
experiments on the short-laser-pulse heating of a multi-
species plasma. Numerous experiments show efficient
proton acceleration because of a hydrocarbon and/or a
water contamination layer on the target surfaces [16,17].

> Zngolexpl(1 + Z,T,/T0)E — (U*/203,)(1 + Z,m,/m,)] — 1} =0,
q

and g = 1, 2, ... enumerates different species of ions. For
definitiveness we choose g = 1 for the ion species with
highest density.

Equations (10)—(13) give exhaustive information on the
kinetics of plasma bunch expansion. However, for prac-
tical applications rough integral characteristics might be
more useful. Two integral characteristics, such as partial
ion density, n,(t, r), and ion energy spectra, dN,/de, can
be calculated from the ion DFs:

nq=foo a’v]oo fidv,,

o 3 ar [ (o0 + 720 - vaw,
0 — 00

de myv

(14)

When integrated over the energy of radial motion, €, the
value qu/ de defines the total number of ions of the
given species in a plasma bunch. The ion density is
defined by the universal function N, as follows:

ng = ng(l + Q232N (V). (15)
For the above examples the functions N, (U) are
Ni(U) = e ¢(1 = p + pel~T/TE), - (16)
z,T U(1+ 2
N, (U) = exp(T" cg UUE Zyme/my)

2
q0 2UTq

>, A7)

respectively. The general form of dN,/de, which is given
by Egs. (7) and (14) is rather complicated but its asymp-
totic behavior at {1 — oo is described by the simple

expression

dN, _ 4200 & o (qu2
de_ Q3m3/2 q 2

= e). (18)

Here the functions N, (U) are given by Egs. (16) and (17)
provided € is not close to zero, 26/Tq > (Qn)72.

In Fig. 1 the dimensionless ion densities /N, are shown
as the functions of the dimensionless coordinate U?/c2,
where c; is defined by the main ion component (¢ = 1).
The curves in the left panel illustrate Example 1 for
carbon plasma m;/m, = 1836A (A =2Z = 12) with
T,/)T,=0.1, T,/T,=10 (curve 1), T,/T, =100
(curve 2), and p = 0.001. The dashed curve corresponds
to plasma without hot electrons, p = 0. The curves C
(carbon ions) and H (protons) in the right panel illustrate
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The corresponding solution of the initial-value problem
reads

o = ngoQm) v exp(—12/v3,). (12)

| Here @ is given by Eq. (10), where

Mo = D Zyngo, (13)
q

Example 2 for carbon plasma with hydrogen impurity
(0.1%) where the dashed lines present the benchmarks
related to pure electron-proton (a) and electron-carbon
(b) plasmas.

Ion acceleration definitely depends on the electron DF
[cf. line / (2) and dashed line in Fig. 1]. Even a small
number of high-energy electrons provides a tenuous halo
around the central plasma region. This halo expands at the
sound speed determined by the temperature of hot elec-
trons (1 > Lo/cgy),

Cep == \/ZTh/mi. (19)

N i = pexp(=r*/2c;, ),

The higher the temperature of hot electrons, the more
energetic are the ions. The presence of ions of several
types changes the dynamics of plasma bunch expansion
that is demonstrated by the right panel in Fig. 1 for a
plasma with light (H) and heavy (C) ions and initially
Maxwellian electrons. Light ions are accelerated more
efficiently and propagate ahead of the heavy ions. They
form a rare halo with a density profile given by an
expression similar to Eq. (19) with the ion acoustic ve-
locity \/Z,T,/m, instead of cg,.

Just as in the case of a plasma with one ion species the
presence of hot electrons leads to an even higher energy
of the impurity ions. This case can be studied by combin-
ing the initial conditions of Examples 1 and 2. Hot elec-
trons significantly change the dynamics of the light
impurity ions. They accelerate the impurity ions which
form a halo. At t > Ly/c; this halo is in the region r >
cypt with the exponential density distribution as in
Eq. (19), where the ion acoustic velocity, \/Z,T,,/m,, is
defined by the mass of the impurity ion and the hot
electron temperature.

FIG. 1. The dimensionless ion densities, N, for carbon

q’
plasma with (right panel) and without (left panel) hydrogen
impurity.

185004-3



week ending
VOLUME 90, NUMBER 18 PHYSICAL REVIEW LETTERS 9 MAY 2003
i
108 b 4Ng
10
102
10 4 10°2 e 10
106104 1072 104102 1 102ZTe ]
U €
q
¢ 102 3 1 3 7 Te
10 ) 102 10" 10 103 ZqTe
107"
3 ‘ € 1072 FIG. 3. The ion energy spectra for carbon plasma with (C, H)
10 103107 10 103ZTe 103 10~ 03?(9 and without (dashed line) hydrogen impurity (0.1%) at Q¢ = 2.

FIG. 2. The ion spectra N.(z, €) for carbon plasma with hot
electrons at {0t = 0 (a), 0.1 (b), 1 (¢c), and 2 (d). The lines / and
2 correspond to T,,/T, = 10 (1) and T},/T, = 100 (2) for p =
0.001 and the lines 2a and 2b correspond to p = 0.001 (1) and
p = 0.03 (2) for T,/T, = 100.

Figure 2 shows evolution of the dimensionless ion
energy spectra, N. = 2m,ZT,Q°(dN;/de€)/4mnyv3,,
for Example 1. The parameters 7;, Z, and A and the
dashed line are the same as in Fig. 1. According to
Eq. (18), the distribution Ni(e, t)/+/€ definitely takes
the form N,(e) for Q> 1. The curves 2a and 2b
correspond to p = 0.001 and p = 0.03, respectively, to
demonstrate an increase of ion acceleration efficiency
with the hot electron density. Two maxima on the initially
monotonic ion spectra appear with time: the first maxi-
mum at € = ZT,/2 describes acceleration of the bulk
ions, while the second one, which grows with n; charac-
terizes the small group of ions accelerated by hot elec-
trons. The typical asymptotic energy of fast ions is
€ = ZT,/2 that corresponds to the second maximum
in the ion spectrum. The high end of the energy spec-
trum typically has a sharp decrease, so that the value
(2 — 3)ZT}, can be referred to as the characteristic ion
energy cutoff.

A similar energy cutoff, (2 — 3)Z,T},, can be found for
light impurity ions in a plasma bunch with hot electrons.
Corresponding ion spectra are shown in Fig. 3 for Q¢ = 2
and hot electron parameters 7;, = 1007, and p = 0.03.
Two maxima in the ion energy spectrum are formed. The
first one at the energy = Z,T,/2 is unique because it
originates from the front of accelerated heavy ions (C).
This effect, which demonstrates kinetic nature of ion
acceleration in the self-consistent electric field, was dis-
covered in particle-in-cell simulations (Fig. 7 in Ref. [18]).
Acceleration of light impurity ions is of current interest
in the experiments on the high-energy proton generation
by short laser pulses with thin foil targets [16,17]. The
measured proton energy cutoff is in qualitative agreement
with the estimation (2 — 3)T,.

The advancement in our understanding of high-energy
particle production in laser-plasma interactions is depen-
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dent upon innovations in the analytical tools used. We
have presented a new analytical approach which allows
one to derive an entire class of three-dimensional solu-
tions to the Cauchy problem for different initial distri-
butions of the particles. A possible application of our
results is the experiments on heating of submicron-size
clusters (dusty plasma) by ultrashort laser pulses that can
give rise to many potential applications.
This work was supported by RFBR and INTAS.
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