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The charge separation effects in the collisionless plasma expansion into a vacuum are studied in great
detail. Accurate results are obtained concerning the structure of the ion front, the resultant ion energy
spectrum, and more specifically the maximum ion energy. These are of crucial importance for the
interpretation of recent experiments, where high-energy ion jets were produced from short pulse
interaction with solid targets.
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rium with the potential � [16], so that Eqs. (1) and (2) still
hold, while the ion expansion into a vacuum is described

similar to that described in [17]. In particular, for solving
the Poisson equation (2), we use the boundary condition at
Recent experiments producing high-energy ion jets
from short-pulse interaction with solid targets [1–11]
have renewed the interest in models of free plasma ex-
pansion into a vacuum [12–24]. Of particular interest is
the ion spectrum and the maximum ion energy obtained
in the experiments. Though widely used in the interpre-
tation of the experimental results, the freely expanding
plasma model has not been fully explored in terms of
charge separation effects and structure of the ion front,
which are still a matter of controversy [20]. Usually
simple estimates are given while we demonstrate in this
Letter that very accurate results can be obtained.

We first recall the fundamentals of the model. At time
t � 0, a plasma is assumed to occupy the half-space
x < 0. The ions are cold and initially at rest with density
ni � ni0 for x < 0 and ni � 0 for x > 0 with a sharp
boundary. On the other hand the electron density ne is
continuous and corresponds to a Boltzmann distribution,

ne � ne0 exp�e�=kBTe�; (1)

where ne0 is the electron density in the unperturbed
plasma (i.e., for x � �1), � is the electrostatic potential,
and Te is the electron temperature, which may be in the
relativistic domain. [In (1) and in following equations, e is
the elementary charge, with the exception of Eqs. (3), (9),
(11), and (13) below, where e denotes the numerical con-
stant 2:718 28 . . . .] One has ���1� � 0 and ne0 � Zni0,
where Z is the ion charge number. The potential � sat-
isfies the Poisson equation,

�0@
2�=@x2 � e�ne � Zni�: (2)

A simple expression for the electric field at x � 0 is
obtained by integration of the Poisson equation from
x � 0 to x � 1 [13],

Efront;0 �
��������
2=e

p
E0; (3)

where E0 � �ne0kBTe=�0�
1=2. The initial condition corre-

sponds exactly to Figs. 1 of [13,17].
For t > 0 the electrons are assumed to stay in equilib-
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by the equations of continuity and motion,

�@=@t� vi@=@x�ni � �ni@vi=@x; (4)

�@=@t� vi@=@x�vi � ��Ze=mi�@�=@x; (5)

where vi is the ion velocity. For x� cst > 0, a self-
similar expansion is found if one assumes quasi-
neutrality in the expanding plasma, with ne � Zni �
ne0 exp��x=cst� 1�, vi � cs � x=t, and

Ess � kBTe=ecst � E0=!pit; (6)

where ss stands for self-similar, cs � �ZkBTe=mi�
1=2 is

the ion-acoustic velocity, and !pi � �ne0Ze2=mi�0�1=2 is
the ion plasma frequency. The self-similar field cor-
responds to a positive charge surface � � �0Ess at posi-
tion x � �cst and a negative charge surface �� at the
plasma edge.

First, the self-similar solution has no meaning as long
as the initial Debye length, �D0 � ��0kBTe=ne0e

2�1=2, is
larger than the self-similar density scale length, cst, i.e.,
for !pit < 1. Second, for !pit � 1, the self-similar
model predicts a velocity increasing without limit for x
going to infinity. Physically the ion velocity is limited to a
finite value and the ions originally at x � 0 form a well-
defined ion front [13]. A rough estimate of the position of
the ion front [14] can be obtained by noting that the self-
similar solution becomes invalid when the local Debye
length, �D � �D0�ne0=ne�1=2 � �D0 exp��1� x=cst�=2	,
equals the density scale length, cst. This position corre-
sponds to 1� x=cst � 2 ln�!pit� (see also Ref. [18] for a
different argument). At that point the self-similar solu-
tion predicts a velocity vi;front � 2cs ln�!pit�. Note that
this implies that the electric field at the ion front is twice
the self-similar field Ess,

Efront ’ 2Ess � 2E0=!pit: (7)

This is easily verified by integrating Ess over time.
To ascertain these estimates and to be far more precise,

we have developed a Lagrangian code which solves
Eqs. (1), (2), (4), and (5). The numerical methods are
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the ion front obtained by integrating the Poisson equation
from x � xfront to x � 1,

Efront �
���
2

p
E0 exp�e�front=2kBTe�

� �2ne;front=ne0�1=2E0 �
���
2

p
kBTe=e�D: (8)

The numerical box is limited to x > �L with L � cst
and vi��L� � E��L� � 0.

Figure 1 shows the charge separation as a function of
space at time !pit � 50, for which the ion front stands at
x=cst ’ 5:59. Three distinct zones are clearly seen: a first
positive layer of charge � � �0Ess per unit surface around
the position x � �cst, where the expansion starts; a
second positive layer of the same charge � just on the
left of the ion front; and a negative layer due to the
electron cloud on its right, with charge �2�. As ex-
pected, the total charge around the ion front is ��.

The corresponding electric field is shown in Fig. 2 at
the same time, showing the rapid increase of the electric
field in the vicinity of the ion front.

The evolution of the electric field at the ion front is
shown in Fig. 3 as a function of time. A very precise
expression for the electric field at the ion front, valid for
any time, is

Efront ’ 2E0=�2e�!2
pit

2�1=2: (9)

One can verify that this expression has the correct be-
havior both for t � 0 [Eq. (3)] and for !pit � 1 [Eq. (7)].
Moreover, the precision of this interpolation formula is of
the order of a percent or less, as can be seen in Fig. 3,
where one hardly distinguishes the numerical result and
the curve corresponding to Eq. (9). As a result, accurate
predictions can be made for the characteristics of the ion
front. First of all, integrating dvfront=dt � ZeEfront=mi,
with Efront given by Eq. (9), and dxfront=dt � vfront, one
obtains successively the ion front velocity and position as
a function of time,

vfront ’ 2cs ln���
��������������
�2 � 1

p
�; (10)
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FIG. 1. Charge separation at time !pit � 50. The ion front
stands at x=cst ’ 5:59.
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xfront ’ 2
�����
2e

p
�D0�� ln���

��������������
�2 � 1

p
� �

��������������
�2 � 1

p
� 1	;

(11)
where � � !pit=

�����
2e

p
.

In the asymptotic limit, !pit � 1, Eqs. (10) and (11)
reduce to

vfront ’ 2cs ln�2�� � cs�2 ln�!pit� � ln2� 1	: (12)

xfront ’ 2
�����
2e

p
�D0��ln�2�� � 1	

� cst�2 ln�!pit� � ln2� 3	: (13)

Figure 4 shows the maximum velocity as a function of
time both from simulation and from Eq. (10). One can see
the excellent agreement between the two curves.

The structure of the ion front is shown in Fig. 5 for
!pit � 50 and !pit � 100 as a function of x=cst. Also
shown is the usual self-similar solution. No ion bump is
observed, in contrast to the results of [13,18] but in agree-
ment with those of [17,19].

In fact, from the equations of the model, analytical
results can be derived in the asymptotic limit, !pit � 1,
which clearly rule out the existence of an ion bump for
our initial conditions. Comparison of Eqs. (8) and (9)
gives immediately (for !pit � 1)

ne;front ’ 2ne0=!2
pit

2: (14)

We then use Eqs. (2), (4), and (5) to derive

d2

dt2
lnni �

�
d
dt

lnni

�
2
� !2

pi
ne � Zni

ne0
; (15)

where d=dt � @=@t� vi@=@x. To get this result, we used
the fact that @=@x and d=dt do not commute, i.e.,

@
@x

d
dt

�

�
d
dt

�
@v
@x

�
@
@x

�

�
d
dt

�
d
dt

lnni

�
@
@x

: (16)

Applying Eq. (15) to the ion front and looking for a
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FIG. 2. Electric field at time !pit � 50. The ion front stands
at x=cst ’ 5:59 where the electric field peaks. The dotted line
corresponds to the usual self-similar solution, Eq. (6). Note that
the electric field at the ion front is approximately twice the self-
similar field, as predicted by Eq. (7).
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FIG. 5. Structure of the ion front at !pit � 50 and !pit �
100. The dotted line corresponds to the usual self-similar
solution.
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FIG. 3. Electric field at the ion front as a function of time.
The empty circles correspond to the numerical results and the
full line to the theoretical formula, Eq. (9). The maximum
relative error is of the order of 1:3� 10�2 for !pit ’ 5 and is
hardly seen in this picture.
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solution with the same time dependence as Eq. (14), one
obtains

ni;front ’ 4ni0=!
2
pit

2: (17)

Spatial derivatives of the electron and ion densities at
the ion front can similarly be obtained. One first easily
obtains from Eqs. (1) and (7)

�@ lnne=@x�front � �eEfront=kBTe ’ �2=cst: (18)

Now deriving (15) with respect to space and using (16),
one obtains

�
d
dt

� 3
d
dt

lnni

��
d
dt

�
d
dt

lnni

�
@
@x

lnni

� !2
pi

@
@x

�
ne � Zni

ne0

�
: (19)

Then, using Eqs. (17) and (18) and looking for a solution
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FIG. 4. Ion front velocity as a function of time. The empty
circles correspond to the numerical results and the full line to
the theoretical formula, Eq. (10). The maximum relative error
is of the order of 7� 10�3 for !pit ’ 9.
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with the same time behavior as (18) one gets

�@ lnni=@x�front ’ �1=2cst: (20)

Time asymptotic behaviors given by Eqs. (14), (17),
(18), and (20) are verified in the present numerical simu-
lation with a high degree of precision (see Fig. 6). On the
other hand these analytical results contradict the ion peak
observed in the numerical solutions presented in [13,18].
(In [20] the ion peak is due to a different initial con-
dition, i.e., an ion front extending on a few Debye lengths
at time t � 0.)

Of crucial importance is the energy spectrum of the
ions deduced from the model. The self-similar model
predicts a number of ions per unit energy and unit surface
given by

dN=dE � �ni0cst=
�����������
2EE0

p
� exp��

�������������
2E=E0

p
�; (21)

where E0 � ZkBTe. Figure 7 shows the spectrum for
!pit � 30 and !pit � 100. The cutoff energy Emax is
easily deduced from (12) for !pit � 1,
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FIG. 6. Electron and ion densities, and their logarithmic
derivatives at the ion front, as functions of time. Densities
are normalized to ne0 and length to �D0.
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FIG. 7. Energy spectrum per unit surface at !pit � 30 and
!pit � 100. Energy is normalized to ZkBTe, and the number of
ions per unit surface and unit energy is normalized to
ni0�D0=ZkBTe. The dotted lines correspond to the prediction
of the self-similar solution, Eq. (21).

P H Y S I C A L R E V I E W L E T T E R S week ending
9 MAY 2003VOLUME 90, NUMBER 18
E max ’ 2E0�ln�2��	2: (22)

In summary we have established accurate results
for the structure of the ion front of a plasma expand-
ing freely into a vacuum. The resultant ion energy spec-
trum is determined and a precise expression for its cut-
off is given. In the interpretation of a real experiment
additional effects may have to be taken into account,
such as non-Maxwellian electron distribution func-
tion [14,15,17,19,24], electron recirculation in thin foils
[9], electron temperature time dependence [17], 2D and
3D effects [6,21], magnetic field effects [3,22], non-
Boltzmann equilibrium [15,16], effect of a finite initial
ion density gradient [7,11,21], ionization mechanisms
[10], etc.
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