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Fracture of a Viscous Liquid
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When a viscous liquid hits a pool of liquid of the same nature, the impact region is hollowed by the
shock. Its bottom becomes extremely sharp if increasing the impact velocity, and we report that the
curvature at that place increases exponentially with the flow velocity, in agreement with a theory by
Jeong and Moffatt. Such a law defines a characteristic velocity for the collapse of the tip, which explains
both the cusplike shape of this region, and the instability of the cusp if increasing (slightly) the impact
velocity. Then, a film of the upper phase is entrained inside the pool. We characterize the critical
velocity of entrainment of this phase and compare our results with recent predictions by Eggers.
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scription of similar singularities has been a very active
field for the past years, either theoretically [5] or experi-

following as a threshold velocity Vc of entrainment of the
upper phase:
We have all observed that diving in a swimming pool
produces air bubbles, while entering slowly in the same
pool does not: The motion of a solid penetrating a liquid
at a high speed largely deforms the surface of this liquid,
and induces air entrainment. This phenomenon often
defines the maximum speed of coating of a solid, which
enters a bath before leaving it coated. Generally, air
entrainment must be avoided because of the resulting
bubbles (which are all the more harmful since the coating
solution generally contains surfactants, and thus is likely
to transform into a foam). Different experiments using
either fibers or plates as solids indeed prove the existence
of a threshold (in velocity) for air entrainment [1], but
there is today no theoretical picture for understanding
quantitatively this phenomenon.

Quite similarly, when a viscous liquid enters a pool of
the same nature (as it occurs, for example, for the stem
wave of a moving ship), air entrainment may occur
(producing bubbles, which ultimately burst —a serious
cause of noise for a ship). Such a bubble production was
observed for a liquid jet impinging a bath of the same
nature, as reported by Lin and Donelly, who studied
experimentally the minimum velocity of air entrainment
as a function of different characteristics of the jet (diam-
eter, viscosity, or surface tension) [2]. This question is
important in many industrial processes where a viscous
liquid (typically molten glass, metal or polymer) is
poured inside a mold—and there again, the formation
of bubbles is detrimental. A remarkable geometry for
studying this phenomenon, and more generally the phe-
nomenology of the regimes of deformation of the liquid
bath, was proposed by Joseph [3,4]. Two counter-rotative
cylinders are partially immersed in a bath, whose upper
surface is observed. At a low speed of rotation, the inter-
face between the cylinders is hardly deformed, but in-
creasing this speed leads to the formation of a cusplike
shape. This device thus produces a singularity at a free
interface, and more generally the observation and de-
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mentally—let us quote, for example, selective with-
drawal [6], the pinch-off of a jet [7], drops running
down on a tilted solid [8], or jet eruptions [9].

Surface tension naturally opposes the formation of such
singularities at a liquid/fluid interface and, for the prob-
lem of the cusp between two counter-rotative cylinders,
Jeong and Moffatt calculated in a classical paper the
(nonzero) radius r of the tip, in the limit of small
Reynolds numbers [5]. They derived an analytical expres-
sion, which can be summarized using a physical argu-
ment proposed by Hinch [5]. In this two-dimensional
geometry, the tip can be seen as a thin (hemi)cylinder,
of radius r. The viscous drag (per unit length) on a
cylinder scales as �V= ln�d=r�, denoting d as an external
length, � as the liquid viscosity, and V as the flow
velocity around the cylinder. On the other hand, the
surface tension � draws this cylinder (as it does on the
edge of a free sheet of liquid) with a force 2� (there
again, per unit length). Balancing both these forces yields
the following as a tip radius:

r� d exp��Ca�; (1)

where Ca is the capillary number (Ca � �V=�).
This law first helps to understand why a tip forms

around a well-defined velocity: The cusp becomes very
sharp when V is of the order of �=�, a logical quantity
since both these parameters play antagonist roles in the
formation of the tip. But it also predicts that r essentially
vanishes above this velocity, and Eggers pointed out that
this should lead to the crack of the tip, because of the
lubrication pressure of the upper fluid, forced to flow in
this very confined region [10]. He showed that, beyond a
critical radius for the tip, the pressure in the cusp breaks
its stationary shape. Thus, this critical radius rc must
increase with the viscosity �0 of the upper fluid, and
Eggers found that rc should scale as ��0=��4=3 [10].
Together with Moffatt’s result [Eq. (1)], this yields the
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FIG. 1. Experimental setup. A solid cylinder is placed at the
interface between a viscous dense liquid and a lighter fluid. The
deformation of the interface between both fluids is monitored as
a function of the speed of rotation of the cylinder.

       

FIG. 2. Four snapshots showing the bath deformation for an
increasing speed of rotation of the cylinder (V is 6, 10, 17, and
30 cm=s, going from left to right). The lower liquid is a silicon
oil of viscosity 0:97 Pa � s and the upper fluid is air. The bar in
the last picture indicates 1 cm.
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FIG. 3. Depth of immersion of the tip as a function of the
velocity of the incoming liquid. The bath is a viscous silicon oil
(� � 0:97 Pa � s) with air above. The straight line indicates a
slope 0.5.
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Vc �
�
�
ln��=�0�: (2)

We could have expected (naively) that entrainment of the
upper fluid would occur when the viscous forces overcome
capillary ones (i.e., Vc � �=�). Eggers’s theory [Eq. (2)]
shows that taking into account the flow of the upper phase
in the cusp should induce a logarithmic correction to this
simple statement. As a consequence, the threshold veloc-
ity should depend on the viscosity of the upper phase, i.e.,
on its nature. This might sound a posteriori quite logical
but, remarkably, this dependence is expected to be ex-
tremely weak.

Here, we investigate experimentally the different situ-
ations related to this problem. We first describe the macro-
scopic deformation of the interface, due to the incoming
flow of liquid. Then, we focus on the smaller scale of the
tip. Finally, we characterize the condition of entrainment
of the upper phase.

We used a horizontal cylinder of radius R � 2 cm, half
immersed in a bath of glycerol (or in some cases silicone
oil), of density  and viscosity � around 1 Pa � s (Fig. 1).
The whole device was set in a transparent tank, and the
upper fluid was either air or light oil (of density 0 <
and viscosity �0 � �). The interfacial tension between
the two fluids, denoted as �, was measured for each
experiment. The cylinder could be rotated at a controlled
velocity �, and the motion filmed with a digital camera.

Aviscous liquid film of thickness h (of typically 5 mm,
thus thick enough to be independent of the nature of the
roller surface) is dragged out of the bath. This layer
impinges the bath at a velocity V ’ ��R	 h�, and de-
forms the free surface at this place by a depth L. We
denote r as the radius of curvature of the bottom of this
hollow region. Figure 2 shows the different shapes ob-
tained with a silicon oil (� � 0:97 Pa � s), and increasing
the speed of the cylinder.

It is observed that both the characteristic lengths L and
r are dynamic in essence: The depth of immersion L
increases with the speed of the cylinder, while the tip
radius r decreases. Moreover, these lengths are very dif-
ferent from each other: While the depth of immersion is
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around 1 cm, the tip has a radius of curvature much
smaller than 1 mm. This radius can become very small
when the speed is large, as first reported by Joseph
et al. [3] in a similar situation. But we do not observe
as they did a clear threshold velocity for the formation of
a cusp—both the lengths L and r varying continuously as
a function of the cylinder velocity.

We first focus on the macroscopic length L, namely, the
depth of immersion of the tip into the bath, and report in
Fig. 3 the variation of L as a function of the impacting
velocity V, for a bath of silicon oil (� � 0:97 Pa � s) .

The depth L of immersion of the tip is found to increase
with V. For speeds larger than 10 cm=s, L is several
millimeters, which is significantly larger than the capil-
lary length ��1 �

����������������
�=�g

p

 1:5 mm (denoting � as

the difference of density between both fluids). We con-
clude that capillary forces can be neglected in this regime
of large velocities. The viscous friction which pulls the tip
downward can be written dimensionally �V=L2, while
gravitational forces per unit volume (which pull it up-
wards) are �g. Balancing both these forces yields

L� ��V=�g�1=2: (3)

Equation (3) defines some kind of viscous length (on
the model of ��1 defined just above, replacing capillary
effects by viscous ones). It describes fairly well the data
184501-2



     

FIG. 4. Macrophotograph of the tip region (the bar indicates
200 �m), for a tip of air in a bath of glycerol. The flow
velocities are, respectively, 14 and 22 cm=s, and the sharpness
of the tip is observed to be highly dependent on this velocity. 1
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FIG. 5. Tip radius as a function of the capillary number Ca �
�V=� for air tips formed in a bath of glycerol (circles, � �
0:91 Pa � s, � � 55 mN=m), and oil tips in a bath of glycerol
(squares, � � 0:53 Pa � s, �0 � 0:5 mPa � s, � � 22 mN=m).
The data are deduced from macrophotographs such as the
ones in Fig. 4. The plot is semilogarithmic, and the equation
of the straight fitting line is r � 993 exp��1:91Ca� (expressed
in micrometers).

FIG. 6 (color online). Above a well-defined velocity Vc, a
thin yet visible sheet of the upper fluid (here air), appearing in
black in the image and stressed by an arrow, comes out of the
tip and enters the viscous bath (here glycerol). The velocity V is
32 cm=s, while the threshold Vc for air entrainment is 30 cm=s.
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in Fig. 3, where L is observed to increase as the square
root of V. Some deviations appear at small V: The defor-
mation then is small (L� ��1), and capillary effects must
be considered. Since they oppose the formation of the
hollow region, they indeed make L smaller than pre-
dicted by Eq. (3).

We then focused on the small scale of the deformation,
namely, the tip itself, and took macrophotographs of this
region. A numerical camera was placed behind an optical
microscope lighted by a classical white lamp, and the
whole device first calibrated using micrometric fibers. The
tip was observed to be slightly deeper close to the con-
tainer walls (which allowed us to make our measurements
conveniently), but remains at about 15 mm from them,
because of their lubrication by the viscous liquid. As
reported in Fig. 4, the tip has a typical radius smaller
than 100 �m, which decreases strongly with the flow
velocity.

Analyzing the contour of the interface close to the tip
allows a determination of the curvature: We can fit this
contour by a parabolic function y � ax2, from which we
deduce the radius of curvature r � 1=2a. We display in
Fig. 5 the measured tip radii as a function of the capillary
number Ca � �V=� for air and oil tips formed in a bath
of glycerol.

The tip radius is found to decrease in a continuous way,
as a function of the flow velocity V. More precisely, its
logarithm varies linearly with V—in agreement with
Moffatt’s law [Eq. (1)], on nearly 2 orders of magnitude
for the tip radius. This exponential behavior helps under-
standing why the cusplike shape apparently sets for a
well-defined velocity, of the order of �=�, although the
actual variation of the radius is continuous with V. But it
also suggests that, slightly above this velocity, the cusp
should become extremely sharp. This is not the case: A
small increase of the roller velocity leads to the destruc-
tion of the tip, and the upper phase then is entrained, as
reported in Fig. 6. Note that the entrainment occurs
simultaneously all along the tip, showing the 2D nature
of the phenomenon.

We denote Vc as the threshold velocity and Cac as the
corresponding capillary number. Our experiments con-
sisted in determining Cac. First, we varied the bath
viscosity �, using mixtures of water and glycerol and
air as the upper fluid. � was measured for each solution.
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The corresponding data are displayed in black in Fig. 7.
Second, we used pure glycerol for the bath, and various
light oils (such as hexane, hexadecane, and silicone oils)
as the upper phase. We measured � for each oil (it was
found to be quite constant, around 26� 1 mN=m). The
corresponding critical capillary numbers are represented
by white points, in Fig. 7, where all our results are plotted
as a function of the viscosity ratio �0=�, in a semilogar-
ithmic scale.

We clearly observe an effect of the viscosity �0 of the
upper fluid (open points): The larger �0, the smaller the
critical capillary number. Nevertheless, this dependency
is weak, since it appears to be well described by a loga-
rithmic law. It is also limited: If the upper fluid is too
viscous (typically �0=� > 0:1), the lower liquid is not
entrained on the roller. For a given upper fluid, varying
the bath viscosity � also leads to a (weak) variation of the
184501-3



 

 

 4

                                  

η o/  η

 
            

                   

oil+glycerol
air+dilute glycerol

Cac

2

0
0.000001     0.00001    0.0001      0.001         0.01            0.1            1

FIG. 7. Critical capillary number Cac � �Vc=� above which
the upper phase is entrained in the viscous bath as a function of
the ratio between both viscosities (semilogarithmic scale). The
full points are obtained using water-glycerol mixtures
(250 mPa � s<�< 1500mPa � s) with air above, while the
open points correspond to glycerol (� � 900mPa � s) with
different light oils above (0:3mPa � s<�0 < 83mPa � s).
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threshold in capillary number—which thus is not simply
given by a value of order unity. All the data lie on the
same semilogarithmic plot, in agreement with Eggers’s
model [Eq. (2)], for a variation on 5 orders of magnitude
of the viscosity ratio �0=�. The slope deduced from the fit
is �0:22, of the order unity as expected from the scaling
law (2).

On the whole, these experiments may help clarifying
the question of the stationary pattern which sets as a
viscous liquid hits itself, in a two-dimensional geometry.
If the impinging velocity is large enough (i.e., for capil-
lary numbers typically larger than 0.1), two very different
dynamic lengths can be defined: a global one, which is the
depth of liquid hollowed by the impact, and which results
from a balance between viscous effects and gravity; and a
local one, at the bottom of this hollow region which can
be expressed as the radius of curvature at this place. As
predicted by Moffatt [5], this radius decreases exponen-
tially with the capillary number. This law defines a char-
acteristic velocity for which the hollow region becomes
very sharp, i.e., takes a cusplike shape, as first reported by
Joseph [3]. At the same time, it predicts a collapse of the
tip radius for finite velocities, which implies the crack of
the tip (entrainment of the upper phase), as postulated by
Moffatt [5] and shown theoretically by Eggers [10]. We
indeed report here such a crack, and show that the critical
velocity for which it occurs is mainly governed by the
bath viscosity, but also depends (in a much weaker man-
ner) on the viscosity of the upper phase—in agreement
with Eggers’s theory.

Different studies could naturally complement this one.
First, it would be worth understanding (both experimen-
tally and theoretically) the thickness of the film of air, in
the regime of entrainment. The selection of this thickness
could remind the Landau-Levich problem (selection of
the thickness of the film adhering to a solid withdrawn
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out of a bath), but the problem here is purely dynamical,
which raises an interesting (and open) question (as in
selective withdrawal, for the radius of the emitted fila-
ment). The problem of the stability of this film, which
eventually breaks in bubbles, also remains to be studied.
Another issue concerns the practically important ques-
tion of water, for which the threshold velocity is much
higher, which would require one to study the influence of
inertia in all the different processes described all along
this study. Second, we observed a deviation towards the
law displayed in Fig. 7 using a very viscous silicone oil as
a bath (instead of glycerol), and air above. Then, for � >
105�0, we measured a critical capillary number much
higher, typically of the order of 5 to 10 (and increasing
rapidly as decreasing the ratio �0=�). A possible cause of
this discrepancy could be the polymeric nature of the
liquid (for which the chains are all the longer since the
viscosity is high), which could lead to non-Newtonian
effects close to the tip —and thus to changes in the
threshold of air entrainment. Using Newtonian silicone
oils of smaller viscosity (with either air or ethanol above)
indeed yields data in very close agreement with the ones
displayed in Fig. 7. Finally, it would be useful to connect
this study with similar ones in other dimensionality. In
particular, Cohen stressed that, for selective withdrawal
(i.e., one-dimensional tip forming when sucking locally a
liquid above an interface), the viscosity of the fluid form-
ing the tip does not affect the value of the cutoff curva-
ture [11]. This could be due to the fact that the Stokes law
on a (hemi)sphere does not contain any logarithmic de-
pendency, as it does for a (hemi)cylinder, which finally
emphasizes that the effects reported here are two dimen-
sional in essence.
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