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With particular attention to the recently postulated introduction of a nonextensive generalization of
Boltzmann-Gibbs statistics, we study the long-term stellar dynamical evolution of self-gravitating
systems on time scales much longer than the two-body relaxation time. In a self-gravitating N-body
system confined in an adiabatic wall, we show that the quasiequilibrium sequence arising from the
Tsallis entropy, so-called stellar polytropes, plays an important role in characterizing the transient
states away from the Boltzmann-Gibbs equilibrium state.
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Introduction—The evolution of a self-gravitating
many-body system involves the long-range nature of at-
tractive gravity and is fundamentally connected with
statistical mechanics and thermodynamics. Historically,
the important consequence from the thermodynamical
arguments had arisen in the 1960s, known as the gravo-
thermal catastrophe, i.e., thermodynamic instability
due to the negative specific heat [1]. Originally, the gravo-
thermal catastrophe had been investigated in a very ideal-
ized situation, i.e., a stellar system confined in a spherical
cavity [2]. Owing to the maximum entropy principle, the
existence of an unstable thermal state has been found
from the standard analysis of statistical mechanics with
a particular attention to the Boltzmann-Gibbs (BG) en-

tropy:
Spg = — jd3x a*v f(x, v) Inf(x, v), (1)

where f(x, v) denotes the one-particle distribution func-
tion defined in phase space (x, v).

Since the 1960s, the standard approach using the BG
entropy has dramatically improved our view of the late-
time phase of the globular cluster as a real astronomi-
cal system [3]; however, the nonequilibrium properties
away from the BG state have not yet been understood
completely.

In this Letter, aiming at a better understanding of the
(nonequilibrium) thermodynamic properties of stellar
self-gravitating systems, we present a set of long-term
N-body simulations, the time scale of which is much
longer than the relaxation time. With a particular empha-
sis to the recent application of the nonextensive general-
ization of BG statistics, we focus on the stellar dynamical
evolution in an isolated star cluster before self-similar
core collapse [4]. We show that the quasiequilibrium
sequence arising from the Tsallis entropy [5] plays an
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important role in characterizing the nonequilibrium
evolution of a self-gravitating system.

N-body simulations.—The N-body experiment consid-
ered here is the same situation as investigated in classic
papers ([2], see also Ref. [6]). That is, we confine the N
particles interacted via Newton gravity in a spherical
adiabatic wall, which reverses the radial components of
the velocity if the particle reaches the wall. Without loss
of generality, we set the units as G = M = r, = 1, where
G is gravitational constant, and M and r, are the total
mass of the system and the radius of the adiabatic wall,
respectively. Note that the typical time scales appearing
in this system are the free-fall time, Ty = (Gp)~'/2, and
the global relaxation time driven by the two-body en-
counter, Ty = (0.1N/InN)Ty [1], which are basically
scaled as Ty ~ 1 and Tyeppx ~ 0.1N/InN in our units. To
perform an expensive N-body calculation, we used a
special-purpose hardware, GRAPE-6, which is especially
designed to accelerate the gravitational force calculations
for collisional N-body systems [7]. With this implemen-
tation, the fourth-order Hermite integrator with individ-
ual time step [8] can work efficiently, which is suited for
probing the relaxation process in denser core regions with
an appropriate accuracy. We adopt the Plummer softened
potential, ¢ = 1/~/r* + €2, with a softening length € of
1/512 and 1/20438.

Here, we set the initial distribution to the stationary
state of the Poisson-Vlassov equation, i.e., dynamical
equilibrium for a spherical system with isotropic velocity
distribution. According to the Jeans theorem [1], the one-
particle distribution function f(x, v) can be expressed as a
function of specific energy, € = v?/2 + ®(r), with r and
@ being the radius and the gravitational potential. Then
keeping the energy and the mass constant, the thermal
equilibrium of ordinary extensive statistics derived from
the maximum entropy principle of the BG entropy (1)
reduces to the exponential distribution, the so-called

© 2003 The American Physical Society 181101-1



VOLUME 90, NUMBER 18

PHYSICAL REVIEW LETTERS

week ending
9 MAY 2003

isothermal distribution given by f(g) « ¢~ %, which ef-
fectively satisfies the equation of state, P(r) « p(r), where
P(r) is pressure and p(r) is mass density [2].

On the other hand, as another possibility, one considers
the extremum state of Tsallis’s nonextensive entropy [S]:

s, = - f Bx PV x VY = V1= q), @)

which might be of particular importance in describ-
ing the quasiequilibrium state away from the BG state
[9]. In this case, the maximum entropy principle leads
to the power-law distribution, f(g) « (®, — &)/, re-
ferred to as the stellar polytrope [10—13]. It satisfies the
polytropic equation of state, P(r) = p(r)'*1/7, and the
polytrope index n is related to the ¢ parameter as n =
1/(g — 1) +3/2 [14]. Provided the polytrope index
n, the equilibrium structure can be determined by solving
the Lane-Emden equation [15] and, using this solution,
the relationship between the dimensionless energy A =
—r,E/(GM?) and the density contrast D = p_/p,, the
core density divided by the edge density, can be drawn
(see Fig. 1; see also [16]). Note that the limit n — oo (or
g — 1) corresponds to the isothermal distribution derived
from the BG entropy (1).

Table I summarizes the list of the five simulation runs.
A more systematic study of the systems with several
initial conditions is now in progress and the details of
the results will be reported elsewhere. In Table I, we also
consider the nonstellar polytropic state of the Hernquist
model [17], which was originally introduced to account
for the empirical law of observed elliptical galaxies [1].
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FIG. 1 (color online). Equilibrium sequences of stellar poly-
trope and isothermal distribution (n = oc0) in the energy-
density contrast relation, A = —r,E/(GM?) vs D= p./p,.
The thick arrows denote the evolutionary tracks in each simu-
lation run.
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Results.—As discussed recently in [11-13], the ther-
modynamic structure of the stellar polytropic distribu-
tion can be consistently characterized by the nonextensive
framework of the thermostatistics. As a result, the stellar
polytrope confined in an adiabatic wall is shown to be
thermodynamically stable when the polytrope index
n < 5. In other words, if n > 5, a stable equilibrium state
ceases to exist for a sufficiently large density contrast
D > D [11,13]. The dotted line in Fig. 1 represents the
critical value D, for each polytrope index, which indi-
cates that the stellar polytrope at low density contrast
D < D is expected to remain stable. Apart from the BG
state, one might expect that the stellar polytrope acts as a
thermal equilibrium.

Of course, this naive expectation is not correct at all.
Indeed, the numerical simulations reveal that the stellar
polytropic distribution gradually changes with time, on
the time scale of two-body relaxation. Further, it seems
that the gravothermal instability appears at relatively
smaller values of D than the predicted one, D;;.. Physi-
cally, the core-collapse phenomenon due to the gravo-
thermal catastrophe follows from the decoupling of the
relaxation time scales between the central and the outer
parts, whose behavior sensitively depends on the physi-
cal property of heat transport [18]. In a rigorous sense,
the thermodynamic prediction might lose the physical
relevance; however, focusing on the evolutionary se-
quence, we found that the transient state starting from
the initial stellar polytrope can be remarkably character-
ized by a sequence of stellar polytropes (runs A, Bl, and
B2). This is even true in the case starting from the
Hernquist model (run C1).

Let us show the representative results taken from run A
(Fig. 2). Figure 2(a) plots the snapshots of the density
profile p(r), while Fig. 2(b) represents the distribution
function f(e) as a function of the specific energy &. Note
that, just for illustrative purposes, each output result is
artificially shifting to the two digits below. Only the final
output with T = 400 represents the correct scales. In each
figure, solid lines mean the initial stellar polytrope with
n = 3 and the other lines indicate the fitting results to the
stellar polytrope by varying the polytrope index n [19].
Note that the number of fitting parameters just reduces to
one, i.e., the polytrope index, since the total energy is well
conserved in the present situation. Figure 2 shows that,
while the system gradually deviates from the initial poly-
tropic state, the transient state still follows a sequence of
stellar polytropes. The fitting results are remarkably good
until the time exceeds T = 400, corresponding to 157 .-
Afterwards, the system enters the gravothermally un-
stable regime and finally undergoes the core collapse.

Now, focus on the evolutionary track in each simula-
tion run summarized in the energy-density contrast plane
(Fig. 1), where the filled circle represents the initial stellar
polytrope. Interestingly, the density contrast of the tran-
sient state in run A initially decreases, but it eventually
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TABLE 1. Initial distributions and their evolutionary states.

Run No. Initial distribution Parameters No. of particles Transient state Final state
A Stellar polytrope (n = 3) D = 10000 2048 Stellar polytrope Collapse
B1 Stellar polytrope (n = 6) D =110 2048 Stellar polytrope Collapse
B2 Stellar polytrope (n = 6) D = 10000 2048 Stellar polytrope Collapse
C1 Hernquist model a/r, = 0.5 8192 Stellar polytrope Collapse
2 Hernquist model a/r,=1.0 8192 None Isothermal

turns to increase. The turning point roughly corresponds
to the stellar polytrope with index n ~ 5—6. Note, how-
ever, that the time evolution of polytrope index itself is a
monotonically increasing function of time as shown in
Fig. 2(c), apart from the tiny fluctuations. This is indeed
true for the other cases, indicating the Boltzmann H
theorem that any of the self-gravitating systems tends to
approach the BG state. Although run C2 finally reaches
the stable BG state, all the systems cannot reach the BG
state. Figure 1 indicates that no BG state is possible for a
fixed value A > 0.335 [2], which can be derived from the
peak value of the trajectory. Further, stable stellar poly-
tropes cease to exist at high density contrast D > D In
fact, our simulations starting from the stellar polytropes
finally underwent core collapse (runs A, Bl, and B2).
Though it might not be rigorously correct, the predicted
value D provides a crude approximation to the bound-
ary between the stability and the instability.

Figure 3 plots the snapshots of the distribution function
taken from the other runs. The initial density contrast in
run B1 [Fig. 3(a)] is relatively low (D = 110), and thereby
the system slowly evolves following a sequence of stellar
polytropes. After T = 2000 ~ 74T ., the system begins
to deviate from the stable equilibrium sequence, leading
to the core collapse. Another noticeable case is the run C1
[Fig. 3(b)]. The Hernquist model as an initial distribution
of run C has a cuspy density profile, p(r) = 1/r/(r + a)’,
which behaves as p o« r~! at the inner part [17]. The
resultant distribution function f(e) shows a singular be-
havior at the negative energy region, which cannot be
described by the power-law distribution. After a while,

however, the gravothermal expansion [6] takes place and
the flatter core is eventually formed. Then the system
settles into a sequence of stellar polytropes and can be
approximately described by the stellar polytrope with
index n = 20 for a long time.

Of course, these remarkable features could be an out-
come in a very idealized situation, and one suspects that
quasiequilibrium state of stellar polytrope cannot hold if
we remove the boundary of the adiabatic wall. As a
demonstration, Fig. 3(c) plots the results removing the
boundary, in which the initial state is the same distribu-
tion as in run A. As expected, the high-energy particles
freely escape outwards from the central region and the
resultant distribution function f(¢) sharply falls off at the
energy region & ~ 0, indicating that the density contrast
D becomes effectively large. Thus, compared to the sys-
tem confined in the wall, the removal of the boundary
makes the stellar system unstable and the core collapse
takes place earlier. Nevertheless, focusing on the inner
part of the denser region, the evolution of the core is not
significantly affected by the escape particles at the outer
part and can be fitted by a sequence of stellar polytropes
[see also the dashed line in Fig. 2(c)]. The successful fit to
the density profile p(r) almost remains the same.

Summary and discussions.—We have performed a set
of numerical simulation of long-term stellar dynamical
evolution away from the BG state and found that the
transient state of the system confined in an adiabatic
wall can be remarkably fitted by a sequence of stel-
lar polytropes. This is even true in the case remov-
ing the outer boundary. Therefore, the stellar polytropic

FIG. 2 (color online).
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Results from simulation run A. (a) Snapshots of density profile p(r). (b) Snapshots of one-particle

distribution function f(g). (c) The time evolution of the polytrope index for run A with and without the boundary of the adia-

batic wall.
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FIG. 3 (color online). Evolution of one-particle distribution function in other models. (a) Run B1. (b) Run C1. (c) Run A removing

the adiabatic wall.

distribution can be a quasiattractor and a quasiequilib-
rium state of a self-gravitating system.

Alternative characterization of the transients away
from the BG state might be possible besides the
g-exponential distribution of stellar polytropes. For an
empirical characterization of observed structure, the
one-parameter family of truncated exponential distri-
butions, the so-called King model has been used in the
literature [1,3,20]. Also, the sequence of the King model
has been found to characterize the evolutionary sequence
of the density profile for isolated stellar systems without
boundary [4]. We have also tried to fit the simulation data
to the King model. Similarly to the stellar polytrope, the
King model accurately describes the simulated density
profile p(r) confined in an adiabatic wall; however, it fails
to match the simulated distribution function f(e), espe-
cially at the cutoff energy scales. Therefore, from the
quantitative description of the entire phase-space struc-
ture, the power-law distribution of the stellar polytropes
can be a better characterization of the quasiequilibrium
state and this could yield an interesting explanation of the
origin of the empirical King model.
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