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Single-file Diffusion of Atomic and Colloidal Systems: Asymptotic Laws
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We present a general derivation of the non-Fickian behavior for the self-diffusion of identically
interacting particle systems with excluded mutual passage. We show that the conditional probability
distribution of finding a particle at position x, after time ¢, when the particle was located at x; at t = 0,
follows a Gaussian distribution in the long-time limit, with variance 2W(r) ~ r'/2 for overdamped
systems and with variance 2W(r) ~ ¢ for classical systems. The asymptotic behavior of the mean-
squared displacement, W(r), is shown to be independent of the nature of interactions for homogeneous
systems in the fluid state. Moreover, the long-time behavior of self-diffusion is determined by short-

time and large-scale collective density fluctuations.
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Single-file diffusion refers to the motion of particles in
narrow pores so that the individual particles are unable to
pass each other and the sequence of particle labels re-
mains the same over time. As the mutual passage is
excluded, the motion of individual particles requires the
collective motion of many other particles in the same
direction. This restriction leads to an anomalous behavior
of the self-diffusion for overdamped systems in the long-
time limit, which has been subject to long-standing theo-
retical investigations [1-3]. For classical systems normal
diffusive behavior has been found for the self-diffusion
function [4—7]. So far, rigorous results have been derived
for the long-time behavior of the conditional probability
density function (PDF), P(y,, |y, 0), of finding a particle
at position y, at time ¢, being located at y, at time ¢ = 0,
only for one-dimensional hard-rod systems using various
analytical methods [1,2,4,8]. For these systems it has
been shown that P(y,, t|yy, 0) is Gaussian with variance
2W(¢) for asymptotically large times. The function W(z) is
the mean-squared displacement (MSD) given by W(¢) =
A, 12 and W(r) = A,t for overdamped and classical
systems, respectively. The constants A, and A, depend
on thermodynamic properties and short-time transport
coefficients of the particular systems. Although these
results have been derived for hard-rod systems only, it is
generally believed that in systems with prohibited ex-
change of particle labels the MSD scales like W(z) ~
"2 in overdamped systems [9] and like W(r) ~ ¢ in
classical systems.

Experimental evidence confirming the anomalous dif-
fusive behavior has been found only recently in atomic
[10,11] and colloidal systems [12]. The experimental re-
sults support the conjectured scaling behavior of the
MSD as given above [9]. The single-filing condition is
hard to fulfill experimentally for atomic systems, whereas
for micrometer-sized colloidal particles narrow channels
can easily be generated [12]. While atoms follow ballistic
motion, colloidal particles follow overdamped motion
due to the presence of the solvent. Moreover, in colloidal
systems there exist additional correlations due to solvent
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mediated hydrodynamic interactions (HI) [13]. Never-
theless, the experiments, using magnetic colloids with
long-range dipole-dipole pair interactions, show clearly
the same long-time scaling of the MSD as predicted for
hard-rod systems with HI neglected.

So far a general theory for the self-diffusion in homo-
geneous single-filing atomic and Brownian systems was
still lacking and will be given in this Letter. We show that
the general conjectured scaling of the MSD for single-
filing systems [9] is indeed true and derive asymptotic
laws for the single-file diffusion of colloidal and atomic
particle systems with arbitrary interaction potential,
under the condition that the correlation length between
the particles is of finite range and the particles interact
identically. We prove that in the limit of times, much
larger than the time needed for a particle to diffuse the
mean particle distance, the conditional PDF P(y,, t|y,, 0)
is normal distributed with variance 2 W(r). Moreover, we
include HI in the case of colloidal systems and give
explicit expressions for the prefactor A in the expression
for the MSD. We show that this prefactor is determined by
the compressibility of the system and the short-time
collective diffusion coefficient and not by the short-
time self-diffusion coefficent which could have been ex-
pected from previous work [8].

Overdamped systems.—We consider a one-dimensional
homogeneous system of N identically interacting
Brownian particles in equilibrium. The system size is of
length L and assumed to be macroscopically large. The
total number density of the particles in the system is
denoted by p = N/L and the mean particle distance is
given by @ = p ~!. The interaction potential is chosen to
be infinite at overlap of any two particle centers.
Consequently, the particles are unable to pass each other.
In the overdamped limit the time evolution of the particle
trajectories follow the stochastic equations [14]

%(’) — QLN O30 + 7o) (1)

with g the so-called backward Smoluchowski operator
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[13,15] given by
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Here, y;() is the position of particle i at time ¢, D;;(y") is
the diffusivity tensor, accounting for solvent mediated
hydrodynamic interactions, and U(y") is the interaction
potential among the particles in the system, given in units
of kzT. We also make use of the supervector notation
yN(t) = {y,(9), ..., yy()}. The random noise 7,(t) is nor-
mal distributed with mean zero, and the second moment
is given by (n;(t)n;(r)) = 2D;;(y")8(r — 1'). We empha-
size that the stochastic equations have to be interpreted in
the Ito sense [16]. The basic quantity we want to calculate
is the MSD, W(r), given by

W() = {yi() = y(0)1) 3)

for asymptotically large times 7. The index i is arbitrary
but chosen such that the particle under consideration is
located sufficiently far from the walls for the time-
interval considered. The brackets, (), indicate an average
with respect to the joint probability density function,
P(y, ,tlyd, O)Peq(yo) of ﬁnding the system at position
y¥ at time 7 and at position y}) at time 7 = 0 in configu-
ration space. Here, P (y") =exp[-U(")]/Zy is the
Boltzmann distribution and Zy the configurational inte-
gral. The conditional PDE P(yY, t|y}, 0), satisfies the
differential equation

39, PN, tlyd, 0) = QLyN 1 PV, tlyd, 0) 4)

with initial condition lim,_o+ P(yY, tly}), 0) = 6(y) — y¥).
In Eq. (4), the operator () is the ajoint operator of ). As
we assume the system to be ergodic and in equilibrium,
the conditional PDF P(y}, t]yY,0) will approach the
Boltzmann distribution, Peq(yN ), in the long-time limit.
Hence, lim,_,W(z) is of quadratic order in the system
size. As W(7) is a monotonically increasing function of
time, the major contribution to the MSD at large times is
given by particle trajectories whose end to end distances
are much larger than the mean particle distance, a. In
the following we look for an expression for the MSD in
the limit ¢ > 7 = a?/Dg, with Dy the short-time self-
diffusion coefficient of a free diffusing particle.

To simplify the calculation for W(¢) we introduce an
auxiliary stochastic function x(f), defined by y;(r) <
x(f) < y;1,(¢), and the microscopic density p(y, 1) =
SN[y — yi(1)]. By definition we have W(t) = W(r)+
O(a) with W(1) = 1/2{[x(t) — x(0)]?). Consequently, the
long-time behavior of W(t) and W(¢) for infinite system
size are related by

W(r)
i fim g5 = 1 ®

In order to calculate W(¢) we have to derive an explicit
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expression for the conditional PDE, P(x,, t|x, 0), of find-
ing trajectory of x(z) at position x, at time ¢ when it was
located at x; at time ¢ = 0.

To this end, it is useful to introduce another stochastic
variable, y; (1) < z(£) < y;1pr+1(0), and take M so large
such that (x(¢')z(¢"")) = 0 for all times ¢, f" = t. By homo-
geneity of the systems, x(f) and z(z) are stochastically
equivalent variables. Now, the conditional PDE ﬁ,(x, —
2, tlxg — 20, 0), to find the two trajectories, x(¢) and z(z),
separated a distance x, — z, at time ¢ when they were
separated a distance xy, — zg at time ¢ = 0 is then given by

P, (Ax, — Az, 1) = f P(Ax, + a, )P(Az, + a, t)da.
L
(6)

Here, Ax, = x;, — x9, Az, = z, — 7y, and we employed
translationary invariance and stationarity for the condi-
tional PDE, P(Ax,, ) = P(x,, t|x,, 0). From the knowledge
of P.(Ax, — Az, t), one can determine uniquely the con-
ditional PDF P(Ax,, 1) by making use of the convolution
theorem.

In the following we determine the function P,(Ax, —
Az, 1) from the stochastic properties of the microscopic
density, p(y, 1). To this end, we introduce the functional

h(xtr Zrlx(): ZO) = [ IFA'(Ys t)dy - f '

<t 20

pO, 0y, (7)

together with the general condition
lim lim Prob{(x(z) — x(0))2 > W(n)'*<} =0, (8)
with € > 0 arbitrary small. Consequently, we get by
definition of x(z), z(¢)
h[x(1), z(1)|x(0), z(0)] = 0. €]

The conditional PDFE, P,(Ax, —
the long-time regime by

Az, t), is then given in

P,(Ax, —

[—o00 t>7N,L

Az, )= limlim lim < (e 2,1, 20)]

‘ dh(x,, z,lxo, 20)
a(-xt - Zl)

(10)

Here, t> t indicates the asymptotic limit for large
times and 8[z] = lim;_.8,[z] is the delta distribution
in the Dirac sense. The reason why we take the asymp-
totic limit ¢ >> 7 before taking the limit [ — oo is because
the conditional probability density, P,(Ax, — Az, 1),
cannot be normalized in a simple way if / — oo is taken
first. By definition of x(z) there corresponds an infinite
set of realizations of p(y,f) to one given realization
of x(r) which leads to divergent contributions for
(6[h(x,, z;lxq, 29)]). Performing the asymptotic analysis
for long times first, we expect to lose all information on
scales of the mean particle distance, and hence there is
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some chance that the same form of normalization is valid,
as used in Eq. (10) for a finite set of realizations of p(y, 1)
corresponding to one realization of x(r). We emphasize
that the right-hand sides of Eqgs. (6) and (10) are stochas-
tical equivalent only in the long-time limit, as in Eq. (10)
we get additional fluctuations because in Eq. (7) there
enters no information that the amount of trajectories of

x(¢) traveling infinitely far during a finite time is of
measure zero. These additional fluctuations do not con-
tribute in the long-time limit, as can be shown by insert-
ing in Eq. (13) any value between the upper bound, as
given in Eq. (8), and the lower bound, x(r) — x(0) = 0,
for x(2).

The conditional PDF for the relative motion, P,(Ax, —
Axy, 1), can be rewritten in integral form

(1D

[—o0 t>71) - Zt)

[Z UEY o — 52/<2l>}d§

d
P.(Ax, — Az, 1) = hm lim ] ‘ PP p—

with «® the nth cumulant of A(x,, z,|x,, zo). In the follow-
ing we show that in the limit # >> 7 only the first two
cumulants contribute to P,(Ax, — Az, t). The first cumu-
lant reads simply

kW = (h(xy, z¢lx0, 20)) = pL(x, — z¢) X0 — 20)] (12)
The second cumulant can be expressed as
K? = (h(x,, z/1x0, 20)%) = (hlx,, zilxo, 20))
5 1 .
=2 [ 1asta.0) ~ (expl—igls, ~ 0]

+explig(z, — 20)])S(q, )1dg.

(13)
Here, we introduced the dynamic structure factor de-
fined by S(q, t) = (6p(q, 1)6p*(q, 0))/N, with 5p(q, 1) =
[ dyexpligyl[p(y, 1) — p], and made use of translation-
ary invariance of the system. By inspection of Eq. (13)
we find that the dominating contributions to the integral
at large times come from values ¢ < a™!

To evaluate S(g, ¢) in the limit of small values of ¢, we
make use of the Mori-Zwanzig projector operator formal-
ism [17,18]. For this purpose we introduce the projection
operators P = |p(g, 0))eq(p(q, 0)I/[NS(g,0)] and Q =
1 — P. Here, we make use of the Dirac notation and the
brackets, (), indicate averaging with respect to
Boltzmann weight. The time derivative of the dynamic
structure factor can be written within this formalism as

08(q, 1) _ S(q, 1)

at S(g, 0)
(14)

dt’

—¢*D*(q)S(q, 1) + ﬁ M(q, t—1)

with an effective wave-vector dependent diffusion
function, D*(q) = DgH(q)/S(q), and the so-called mem-
ory function M(q, 1) = (p(g, 0)QQexp[0Q0r10 X
1255(q, 0))eq [13]. Here, H(q) = (p(g, 0)|Qp|p(q, 0))eq/
(g*DgN) is the hydrodynamic function [19]. Detailed cal-
culations show that M(q, 1) = O(g*) if HI is neglected, or
taken into account in far-field approximation, D;;(y") =
D;i(y; — y,) [13]. The full treatment of HI in the memory
function gives contributions of order g, but the correc-
tion to S(g, ) are within only a few percent, even for
highly concentrated suspension with short-range interac-
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tions [20]. For the colloidal systems used in the experi-
ments of Ref. [12], the far-field approximation of D;;(y")
has been shown to be an excellent one [21].

For identical Brownian particles and HI neglected or
treated on a pairwise additive level the solution of Eq. (14)
for S(g, t) is given by

S(g, 1) = S(g, 0)exp[—¢*D*t] + O(q*r),  (15)

with D¢ = lim,_,D¢(q). Substituting Eg. (15) into
Eq. (13), the second cumulant reads, in the asymptotic
long-time regime,
e
k? = 4pS<¥>1/2+o(t5/2). (16)

Here, S = S(0, 0) is the relative compressibility [18] and
the dependence of k@ on x, — x is of order o(1¢/2) due to
the condition Eq. (8). The higher cumulants are given by
k@) = 0and k@ = O(:'/2) forn € {1, 2, .. .}. In order
to prove that the odd cumulants higher than one are
exactly zero, we have made use of the backward operator
to be Hermitian with respect to the Boltzmann weighted
inner product, (fQgg)eq = (§{2pf)eq» and invariance of
the system with respect to translation and space inversion.
The asymptotic scaling of the even cumulants can be
found with the help of the mean-value theorem of inte-
gration and the fact that the correlation length between
particles can be taken finite for physical systems in the
fluid state. For a 2n-point correlation function one uses the
mean-value theorem for 2n — 2 integrals and then pro-
ceeds along the same line as for the second cumulant.

Using the explicit expressions for the cumulants we
find from Eq. (11)

p*(Ax, —

- AZ;)2
P, (Ax, — 5@ }

_ p _
AZ;, f) = Wexp[

7)
From Eq. (6) we can derive finally an expression for the

conditional PDF for x(z),

p2(xt - x0)2

- B p _
P(x[: t|X(), 0) - (7TK(2))1/2 eXp|: K(z)

}. (18)

Hence, the mean-squared displacement in the asymptotic
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limit is given by
S
W(r) ==(D°t/m)"/? + o(1/?) fort> 7.  (19)
p

The effective diffusion constant D¢ can be experimen-
tally determined by a short-time measurement of S(qg, )
at ¢ < a~' [22]. For times short enough that each indi-
vidual particle does not “feel” the presence of the other
particles by direct interactions, the integral over the
memory function in Eq. (14) does not contribute, and
thus there exists a unique relationship between S(q, 1)
and D¢ as given in Eq. (15) with the second term on the
right-hand side neglected. It is interesting to see that a
long-time self-diffusion property like the MSQ can be
determined to high accuracy from the short-time collec-
tive behavior of the system. This fact is a direct conse-
quence of the single-filing condition imposed on our
system.

Classical systems.—So far we have considered only
interacting Brownian particles in the overdamped limit.
For classical particle systems following Liouville dynam-
ics, like atoms or molecules in the high temperature limit,
we can essentially follow the same route as for the over-
damped systems with the Liouville operator substituted
for the Smoluchowsky operator. The analysis follows the
same line as for overdamped systems with the result that
the conditional PDF for classical systems is again
Gaussian to leading order in time but normal diffusive,

_ (o, — x0)?
4Dt

with self-diffusion constant D; = ©(1 — dp)/(2p) for
hard-rod systems (cf. Refs. [4,5]) and D, = ¢,SCy/
(2Cpp)~! for classical systems in the hydrodynamic re-
gime [23]. Here, v is the average velocity of the particles,
d is the rod length, ¢, is the speed of sound, and Cy and
Cp are the specific heats at constant volume and pressure,
respectively. If the low-frequency sound modes are sup-
pressed, like in the presence of a randomizing background
(e.g., particle-wall interactions in a porous media), the
MSD can be shown to scale like W(f) ~ ¢1/2 [8]. This
interesting property of single-filing systems will be the
subject of a forthcoming paper.

In conclusion, we have derived a general theory for the
asymptotic behavior of the MSD in single-filing systems.
We have shown that W(z) is determined by the short-time
and large-scale collective behavior of the particles in the
system. This relation holds true for any kind of interac-

P(x,, tlxo, 0) = (47D,r)~ /2 exp|: } (20)
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tion potential as long as the correlation length between
the particles is finite, which is true for any physical
system in the fluid state. Moreover, this relation is unique
in the case of classical systems and in the case of over-
damped systems with HI taken into account in far-field
approximation.
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