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A funnel transformation is introduced, which acts recursively from higher towards lower tempera-
tures. It biases the a priori probabilities of a canonical or generalized ensemble Metropolis simulation,
so that they zoom in on the global energy minimum, if a funnel exists indeed. A first, crude
approximation to the full transformation, called rugged Metropolis one (RM1), is tested for Met-
Enkephalin. At 300 K the computational gain is a factor of 2 and, due to its simplicity, RM1 is well
suited to replace the conventional Metropolis updating for these kinds of systems.
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��v1; . . . ; vn; 300 K� describes small fluctuations around be severely restricted, as we illustrate. The idea is to use a
To explain important aspects of protein folding,
Bryngelson and Wolynes introduced a funnel picture
[1], which is supported by various numerical results
[2–4]. Nevertheless, the understanding as well as the
practical relevance of the funnel concept has remained
somewhat limited. The reason is that the funnel lives in
the high-dimensional configuration space, while numeri-
cal studies have been confined to projections onto so-
called reaction coordinates, and there is no generic
definition of a good reaction coordinate. Here I follow
a different path and introduce a general funnel descrip-
tion from higher towards lower temperatures. It yields
a powerful new method for designing Metropolis [5]
weights.

In protein models the energy E is a function of a
number of dynamical variables vi, i � 1; . . . ; n whose
fluctuations in the Gibbs canonical ensemble are de-
scribed by a probability density (pd) ��v1; . . . ; vn;T�,
where T is the temperature. To be definite, we use in the
following the all-atom energy function [6] ECEPP/2
(empirical conformational energy program for peptides).
Our dynamical variables vi are the dihedral angles, each
chosen to be in the range �� � vi < �, and the volume
of the configuration space is K � �2��n.

Let us define the support of a pd of the dihedral angles.
Loosely speaking, the support of a pd is the region of
configuration space where the protein wants to be.
Mathematically, we define Kp to be the smallest sub-
volume of the configuration space for which

p �
Z
Kp

Yn
i�1

dvi��v1; . . . ; vn;T� (1)

holds. Here 0< p< 1 is a probability, which ought to be
chosen close to 1, e.g., p � 0:95. The free energy land-
scape at temperature T is called rugged, if the support of
the pd consists of many disconnected parts (this depends,
of course, a bit on the adapted values for p and ‘‘many’’).
That a protein folds at room temperature, say, 300 K, into
a unique native structure v0; . . . ; v0n means that its pd
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this structure. We are now ready to formulate the funnel
picture in terms of pds. Let us choose a protein and
consider for it a sequence of pds

�r�v1; . . . ; vn� � ��v1; . . . ; vn;Tr�; r � 1; . . . ; s;

(2)

which is ordered by the temperatures Tr, namely,

T1 > T2 > . . . > Tf: (3)

The sequence (2) constitutes a protein funnel when, for a
reasonable choice of the probability p and the tempera-
tures (3), the following holds:

(i) The pds are rugged.
(ii) The support of a pd at lower temperature is con-

tained in the support of a pd at higher temperature

Kp
1 � Kp

2 � . . . � Kp
f ; (4)

e.g., for p � 0:95, T1 � 400 K, and Tf � 300 K.
(iii) With decreasing temperatures Tr the support Kp

r

shrinks towards small fluctuations around the native
structure.

Properties (ii) and (iii) are fulfilled for many systems
of statistical physics, when some ground state stands in
for the native structure. The remarkable point is that they
may still hold for certain complex systems with a rugged
free energy landscape, i.e., with property (i) added. In
such systems one finds typically local free energy min-
ima, which are of negligible statistical importance at low
temperatures, while populated at higher temperatures. In
simulations at low temperature the problem of the mo-
lecular dynamics (for a review, see [7]) as well as of the
Metropolis [5] canonical ensemble approach is that the
updating tends to get stuck in those local minima. On
realistic simulation time scales this prevents convergence
towards the native structure. On the other hand, the simu-
lations move quite freely at higher temperatures, where
the native structure is of negligible statistical weight.
Nevertheless, the support of a protein pd may already
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relatively easily calculable pd at a higher temperature to
improve the performance of the simulation at a lower
temperature. In the following we investigate this idea
for the Metropolis algorithm.

The Metropolis importance sampling would be per-
fected, if we could propose new configurations fv0ig with
their canonical pd ��v01; . . . ; v

0
n;T�. Because of the funnel

property (ii) we expect that an estimate ��v1; . . . ; vn;T
0�

from some sufficiently close-by higher temperature T0 >
T will feed useful information into the simulation at
temperature T. The potential for computational gains is
large because of funnel property (iii). The suggested
scheme for the Metropolis updating at temperature Tr is
to propose new configurations fv0ig with the pd (2)
�r�1�v

0
1; . . . ; v

0
n� and to accept them with the probability

Pa � min

�
1; exp

�
�
E0 � E
kTr

�
�r�1�v1; . . . ; vn�
�r�1�v

0
1; . . . ; v

0
n�

�
: (5)

This equation biases the a priori probability of each
dihedral angle with an estimate of its pd from a higher
temperature. In previous literature [8,9] such a biased
updating has been used for the �4 theory, where it is
efficient to propose ��i� at each lattice size i with its
single-site probability.

For our temperatures Tr the ordering (3) is assumed.
With the definition �0�v1; . . . ; vn� � �2���n the simula-
tion at the highest temperature, T1, is performed with the
usual Metropolis algorithm. We have thus a recursive
scheme, called rugged Metropolis (RM) in the following.
When �r�1�v1; . . . ; vn� is always a useful approximation
of �r�v1; . . . ; vn�, the scheme zooms in on the native
structure, because the pd at Tf governs its fluctuations.

To get things working, we need to construct an esti-
mator ��v1; . . . ; vn;Tr� from the numerical data of the
RM simulation at temperature Tr. Although this is neither
simple nor straightforward, a variety of approaches offer
themselves to define and refine the desired estimators.
In the following we work with the approximation

��v1; . . . ; vn;Tr� �
Yn
i�1

�1
i �v1; . . . ; vn;Tr�; (6)

where the �1
i �v1; . . . ; vn;Tr� are estimators of reduced

one-variable pds defined by

�1
i �vi;T� �

Z 
�

��

Y
j�i

dvj��v1; . . . ; vn;T�: (7)

The resulting algorithm, called RM1, appears to consti-
tute the simplest RM scheme possible. Its implementation
is straightforward, as estimators of the one-variable re-
duced pds are easily obtained from the time series of a
simulation. The computer time consumption of RM1 is
practically identical with the one of the conventional
Metropolis algorithm. In the following RM1 is used to
demonstrate the correctness of our basic assumptions.
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The scope of this Letter limits us to one illustration.We
rely on a simulation of the brain peptide Met-Enkephalin
(Tyr-Gly-Gly-Phe-Met), because it is a numerically well
studied system, which allows for comparison with results
of the literature [10–13]. Our Metropolis simulations are
performed with a variant of SMMP [14] (simple molecu-
lar mechanics for proteins). We keep the ! torsion angles
unconstrained and thus have 24 fully variable dihedral
angles. In the previous literature the omega angles were
either fixed to � or restricted to ��� �=9; �
 �=9�.
This leads to statistically significant differences in the
energy, while the structural differences remain negli-
gible. The performance of the RM1 updating was tested
at 300 K using input from a simulation at 400 K. The
value of 300 K is chosen, because it is in the tempera-
ture range on which simulations of biological molecules
eventually have to focus. The temperature of 400 K is
high enough so that the Metropolis algorithm is efficient
as the autocorrelation times are small, while it is low
enough to provide useful input for the 300 K simulation.

At each simulation temperature a time series of 217 �
131 072 configurations is kept, in which subsequent con-
figurations are separated by 32 sweeps. A sweep is defined
by updating each dihedral angle once. Before starting
with the measurements 218 � 262 144 sweeps are per-
formed for reaching equilibrium. Thus, the entire simu-
lation at one temperature relies on 218 
 222 � 4 456 448
sweeps. On a modern PC (1.9 GHz Athlon) this takes
under 12 h for the vacuum system and less than 2 d with
the inclusion [15] of solvent effects. For each dihedral
angle the acceptance rate of the Metropolis algorithm was
monitored at run time and the integrated autocorrelation
time �int (see [16] for its definition) was calculated from
the recorded time series. Values around 0.5 are desirable
for the acceptance rate, but the decisive quantity for the
performance of an algorithm is the integrated autocorre-
lation time. To achieve a predefined accuracy, the com-
puter time needed is directly proportional to �int. In the
following results from vacuum simulations are summar-
ized. Computations which include solvent effects will be
reported elsewhere [17].

In Table I results for the energy and two dihedral angles
are presented. Error bars are given in parentheses. The
acceptance rates are accurate to 1 in their last digit.
Using the SMMP [14] conventions, which differ from
previous literature [10–12], the angles are Gly-2 ! (v6)
and Gly-3 � (v10). They are well suited to illustrate
important features of our approach.

The Gly-3� angle and four more angles (Gly-2�, Gly-
2  , Phe-4 �, and Phe-4  ) exhibit very large autocorre-
lation times. In Fig. 1 estimates of the one-variable pds (6)
for the Gly-3 � angle at 400 and 300 K are depicted. The
rugged nature of the distribution is already obvious at
400 K. While the shapes of the other 23 dihedral angle
pds vary greatly, featuring from one to three local max-
ima, a ruggedness and our funnel property (ii) are found
180601-2



TABLE I. Acceptance rates and integrated autocorrelations
times for the energy E and, in the SMMP notation, the dihedral
angles Gly-2 ! (v6) and Gly-3 � (v10).

Variable Method 400 K 400 K 300 K 300 K

acpt �int acpt �int
E Metro 0.168 4.98 (20) 0.120 49.6 (5.0)
E RM1 � � � � � � 0.375 26.2 (1.6)
E PT 0.167 3.67 (20) 0.119 19.9 (1.6)
E PT
 RM1 0.460 2.56 (34) 0.375 9.94 (60)
v6 Metropolis 0.049 3.09 (10) 0.034 21.1 (1.8)
v6 RM1 � � � � � � 0.416 9.68 (66)
v6 PT 0.049 2.24 (07) 0.034 7.85 (36)
v6 PT
 RM1 0.553 1.34 (04) 0.413 4.62 (55)
v10 Metro 0.088 7.49 (47) 0.034 167 (27)
v10 RM1 � � � � � � 0.070 80.6 (7.0)
v10 PT 0.087 6.13 (30) 0.034 32.7 (3.1)
v10 PT
 RM1 0.141 4.43 (26) 0.070 22.6 (2.7)
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for each case. Towards low temperatures a shrinking of
the one-variable pds to their global energy minimum
(GEM) implies property (iii). The arrow in Fig. 1 indi-
cates the GEM value of this particular angle. Note that for
the Metropolis algorithm the �1

i � 0 regions do not con-
stitute free energy barriers, because they can be jumped
by a single Metropolis updating step. This is different for
molecular dynamics simulations.

Despite the similarities of the Gly-3 � pds at 400 and
300 K, there is a big increase of the Gly-3 � integrated
autocorrelation time. In the conventional, canonical
Metropolis simulation it is by more than a factor of 20
from 7.5 to 167. The RM1 updating reduces this by a
factor of 2.1, from 167 to 81. The integrated autocorrela-
tions times of Table I are given in units of 32 sweeps, as
this is the step size of our time series data recorded.

The acceptance rates for moves of the Gly-3 � angle
are very small. As the support of its pds in Fig. 1 covers
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FIG. 1. Vacuum probability densities at 400 and 300 K for the
Met-Enkephalin dihedral angle Gly-3 �.
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more than 50% of the full range, this has to be due to
correlations with other dihedral angles. To exhibit a rather
distinct case of an angle with a low acceptance rate,
results for one of the six ! angles are also included in
Table I. For the conventional Metropolis simulation this
angle has the same acceptance rate as the Gly-3 � angle
(incidentally to all digits given). A look at the Gly-2 !
pds reveals an obvious reason: They are narrowly peaked
around the (identified) values �, which is explained by
the specific electronic hybridization of the CO-N peptide
bond. Autocorrelation times are about 8 times smaller
than for the Gly-3 � angle. Applying RM1 updating to
the Gly-2 ! pds cures entirely the problem of its low
acceptance rate. At 300 K the increase is from 0.034 to
0.416, and similar numbers are found for the other !
angles. In contrast to that, the Gly-3 � acceptance rate
increases only to the modest value of 0.07, while the
improvements of �int are kind of similar. For Gly-2 ! it
is by a factor of 2.7 from 21 to 7.9.

It is straightforward to combine the RM1 updating with
generalized ensemble methods (see [18] for a review).
They are enabling techniques for studying equilibrium
physics of complex systems at very low temperatures [19].
In the parallel tempering (PT) approach [20,21] two or
more replica are simulated in parallel at distinct tempera-
tures and Metropolis exchanges of the temperatures are
offered occasionally. Autocorrelations are reduced, when
suitable excursions to higher temperatures become fea-
sible. In Table I results for a PT simulation with replica at
400 and 300 K are included. To compare with RM1, we
use the integrated autocorrelation time of the energy,
which characterizes the overall performance. The PT
method decreases �int by a divisor of 2.5, from 50 to 20.
When parallel nodes with a reasonably fast communica-
tion are available, this is the gain in real time. For RM1

the improvement factor is 1.9, from 50 to 26. Thus, PT
outperforms RM1 in real time, while RM1 wins in the
total CPU time. Most remarkable is that the improvement
factors multiply. Running PT with the RM1 updating
yields another factor of 2, �int is reduced from 20 to 10
and, altogether, from 50 to 10. Note that the acceptance
rates are not changed by PT.

In previous simulations [3,12] it has been shown that
considerably lower temperatures than 300 K are needed
to reduce the fluctuations of Met-Enkephalin in vacuum
to fluctuations around its GEM. Here, I point out that each
of our simulations at 300 K reaches the valley of attrac-
tion of the GEM sufficiently often, so that the GEM
can be found by local minimization. To be specific, the
energy spectrum of Fig. 2 is obtained from our RM1

simulation at 300 K in the following way: First we iso-
late all configurations of the time series which are min-
ima in the lower 10% quantile (for the definition, see [22])
of the energy distribution and separated by an excursion
of the time series into the upper 10% quantile. In this way
we obtain 1357 configurations and the SMMP minimizer
180601-3
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FIG. 2. Spectrum of energy-minimized Met-Enkephalin
configurations from the 300 K RM1 simulation in vacuum.
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is run on each of them. The probabilities of the result-
ing spectrum levels are plotted in Fig. 2. The GEM
occurs at E � �12:91 Kcal=mol with about 6% proba-
bility (107 times) followed by a conformation at E �
�10:92 Kcal=mol with about 4% probability. The fre-
quency of finding the GEM for the other simulations of
Table I is approximately proportional to ��1

int of the energy.
Rugged distributions of the dynamical variables are

typical for Metropolis simulations of proteins and RM1

improves the importance sampling. It ought to become
standard, as it yields a relevant gain in computer time for
little extra efforts by the programmer. Met-Enkephalin
is essentially solved by a simulation at 300 K. For some
of its dihedral angles the RM1 updating overcomes the
problem of low acceptance rates entirely. For others the
improvement remains more modest, because their low
acceptance rates are due to correlations with other
angles. Only multivariable moves can achieve importance
sampling in such a situation. For the usual Metropolis
algorithm the acceptance rates for multivariable moves
are practically zero. Here, we gained novel physical in-
sight into the funnel picture, which provides us with a
recipe on how to design multivariable moves, so that the
acceptance rate is expected to stay reasonably large. One
will start with the angles with the worst autocorrelations
and construct their two-angle moves according to their
reduced two-variable pds, the RM2 algorithm. Next, one
may use three variables, and so on. In this way the out-
come of our investigation of computational consequences
of the funnel picture is that we do not expect a single,
generically good Metropolis algorithm for protein simu-
lations. Instead, we have developed a strategy to design
an algorithm for each particular protein. This aspect of
the RM approach promises advances for simulations of
larger peptides.
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