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Beliaev Damping and Kelvin Mode Spectroscopy of a Bose-Einstein Condensate
in the Presence of a Vortex Line
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It is demonstrated theoretically that the counter-rotating quadrupole mode in a vortex of Bose-
Einstein condensates can decay into a pair of Kelvin modes via the Beliaev process. We calculate the
spectral weight of a density-response function within the Bogoliubov framework, taking account of
both Beliaev and Landau processes. Good agreement with experiment on 87Rb by Bretin et al. [Phys.
Rev. Lett. 90, 100403 (2003)] allows us to unambigiously identify the decayed mode as the Kelvin wave
propagating along a vortex line.
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FIG. 1. Solid circles show the dispersion relations !�1�qz�

q� � �2. (ii) After the decay of q� � �2 mode, there
remains a density oscillation pattern along the long axis

of �q�; qr� � ��1; 0� along qz in the case of the vortex-free
state (a) and a single-vortex state (b). � denotes !�2.
Much attention has been focused on Bose-Einstein
condensation (BEC) realized in alkali-atom gases [1].
Quantized vortices which are a hallmark of super-
fluidity [2] are created in various methods, such as phase
imprinting [3], mechanical rotation by optical spoon [4],
and topological Berry phase engineering [5]. Hundreds
of vortices are trapped in a BEC system [6]. The crea-
tion and decay processes of vortices are investigated
experimentally and theoretically, giving rise to a general
consensus [2] that quantized vortices in a scalar, i.e., one-
component BEC are well described by the Bogoliubov
framework regarding to the static properties, such as the
density profile or core radius, etc.

In contrast, regarding the dynamical aspects, the study
of low-lying collective modes is rather scarce in theory
and particularly in experiment. Needless to say, the low-
lying Fermionic excitations in a vortex have played a
fundamental role in charged or neutral Fermion systems,
that is, the mixed state in a superconductor [7] and super-
fluid 3He. Here we have a unique opportunity to inves-
tigate Bosonic excitations associated with a vortex, which
was difficult in superconductivity. In particular, the so-
called Kelvin mode [8] propagating along the vortex line,
which is studied in classical normal fluids and superfluid
4He, is interesting to identify and characterize in the
present dilute Bose gases. This is an unexplored region.

Note that Bosonic excitations with lower energy in a
vortex-free BEC are thoroughly studied; the breathing or
monopole mode with the azimuthal angular momentum
q� � 0, the dipole Kohn mode q� � 1, and the quadru-
pole mode q� � 2 for an axis-symmetric system [1].

Recently, Bretin et al. [9] performed an experiment to
examine the quadrupole modes with q� � �2 for a long
cigar-shaped BEC with a vortex line, observing the decay
process. Their results are summarized as follows: (i) The
one of the splitted quadrupole mode q� � �2, which
rotates opposite to the vortex winding, decays two times
faster than the other corotating quadrupole mode with
0031-9007=03=90(18)=180401(4)$20.00 
(z axis) whose nodes are 7 or 8 within the length of the
condensate. The oscillation pattern is localized near the
vortex core, seen in the radial direction profile.

Here we investigate the physical implication of these
interesting observations, by calculating the density-
density response function based on the wave functions
and eigenvalues of the Bogoliubov–de Gennes equa-
tion for describing the collective modes of Bosonic
excitations.

Before going into detailed computation of a cylindrical
system with a vortex, we first give a clear physical picture
for these phenomena which is fully justified microscopi-
cally later: At low temperatures, among the two possible
decay channels, the Beliaev process dominates over the
remaining Landau process [10]. The counter-rotating
quadrupole mode with the energy !�2 and the angular
momentum q� � �2 (in units of the radial harmonic
frequency !r and �h � 1, respectively) can decay into a
pair of the dipole mode with !�1, conserving the energy
!�2 ! 2!�1 and the angular momentum �q� � �2� !
�q� � �1� � �q� � �1�. However, as seen from Fig. 1
where a Beliaev process is depicted as a function of the
wave number qz along the z axis, the pair created dipole
modes [see Fig. 1(b)] should have a finite ~qqz, namely,
!�2�qz � 0� ! !�1�~qqz� �!�1��~qqz�. Note that in the
absence of a vortex shown in Fig. 1(a) there is no
2003 The American Physical Society 180401-1
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Beliaev process because 2!1�qz� > !2, which is well
known, leaving only Landau decay active [11]. Likewise
as for the other comoving quadrupole mode with q� �
�2 there is no Beliaev process because 2!�1 > !2. Only
the Landau process, in which the quadrupole mode anni-
hilates with the thermally already excited modes into
other modes, is responsible for the decay.

Here it is central that the so-called anomalous mode
!�1 at qz � 0 has a negative value [12–14] relative to the
condensate at the zero energy and that their wave function
is radially localized at the core region whose wave length
is an order of the coherence length. Along the z direction
it oscillates sinusoidally with ~qqz. This explains the above
experimental facts (i) and (ii) simultaneously. In addition
the decay time of!�2 should be the same as in the vortex-
free case, which is indeed the case [9].

Let us now consider this novel phenomenon of the
single-vortex condensate from the microscopic viewpoint.
The Hamiltonian in a rotating frame with the angular
frequency �rot is given by ĤH �

R
dr�̂�y�r�fh�r��

g
2 �̂�

y�r��̂��r�g�̂��r�. The creation and annihilation opera-
tors of the Bose particle are �̂�y and �̂�, which are decom-
posed into �̂��r� � ��r� �  ̂ �r�. The single-particle
Hamiltonian is given as h�r� � �� �h2r2=2m� ���
V�r� ��rot  �r� p� with the confining potential V�r�
and the chemical potential �. The last term in ĤH de-
scribes the interaction between the particles, which is
classified into the resulting eight terms according to the
noncondensate part  ̂ , by using the decomposition of the
field operator obtained above [15].

The quadratic Hamiltonian may be diagonalized by
the usual Bogoliubov transformation,�

 ̂ 
 ̂ y

�
�

X
q

�
uq �v�q
�vq u�q

��
�q

�y
q

�
�

X
q

ÛUy
q

�
�q

�y
q

�
: (1)

This diagonalization leads to the following conditions.
First we impose the condition on the condensate wave
function ��r� as �h�r� � gj��r�j2���r� � 0, which is the
so-called Gross-Pitaevskii (GP) equation. The
Bogoliubov–de Gennes (BdG) equation for the quasipar-
ticle is given in terms of the eigenfunctions uq and vq

fh�r� � 2gj��r�j2guq�r� � g�2�r�vq�r� � "quq�r�;

fh�r� � 2gj��r�j2gvq�r� � g��2�r�uq�r� � �"qvq�r�;
(2)
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where q is the quantum number for the eigenstate. It is
well known that the eigenvalues "q correspond to the
normal modes of the condensate and the values are
good agreement with experiment for systems with negli-
gible thermal cloud [1].

We consider the collective mode by the linear response
theory [15]. In the presence of an external field coupled to
the density h�̂�y�̂�i, the linear response is characterized
by a retarded correlation function DR�rr0; t� t0� �
�ih��̂�y�rt��̂��rt�; �̂�y�r0t0��̂��r0t0��i��t� t0�, where h  i
denotes the thermal average. In order to calculate DR

directly, it is convenient to introduce a Matsubara corre-
lation function D�rr0; �� �0� � �h��̂�y�r���̂��r�� �
�̂�y�r0�0��̂��r0�0��i. The Fourier coefficient D�rr0; i�n�
can be related to the retarded correlation function,
DR�rr0; !�, by using the analytic continuation i�n !
!� i�. Here � is a positive infinitesimal constant and
we use � � 0:005!r in our calculation. In the dilute Bose
system, the Matsubara correlation function is character-
ized by a matrix

D �rr0; i�n� ’ �����r�; ��r��ĜG�rr0; i�n����r0����r0��;

(3)

where ĜG is a 2� 2 matrix renormalized Green’s function
defined as ĜG�r�; r0�0� � �hT��ÂA�r��ÂAy�r0�0��i with the
matrix operator ÂAy � � ̂ y;  ̂ �. Using the Beliaev-Dyson
equation, we have ĜG � �ĜG�1

0 � �̂���1 [10,15] with the
bare Green’s function ĜG0 which is constructed from
quasiparticles and the canonical transformation Eqs. (1)
and (2).

The self-energy is expressed, by the second order per-
turbation theory on g, as �̂� � �̂��1�

� �̂��2�. The first order
term �̂��1�, which contributes to the energy shift, is

�̂� �1� �
Z
drÛUy

q1�r�
�
2g�� �� g 

g � 2g�� ��

�
ÛUq1�r�;

(4)

where the noncondensate density ��r� �P
q�juq�r�j

2f�"q� � jvq�r�j2ff�"q� � 1g�, the anomalous
average  �r� � �

P
quq�r�v

�
q�r�f2f�"q� � 1g, and the

Bose function f�"q� � �exp�""q� � 1��1 with " �
1=kBT. �� corresponds to the change in the chemical
potential, arising from the inclusion of mean field inter-
actions in the GP equation, while the change of the
condensate shape is small in low temperatures and may
be ignored [16]. The second order term �̂��2� is given by
�̂��2�
�q1q0

1; i�n� � g2
X
q;q0

�
A1;qq0 �q1�
A2;qq0 �q1�

�
�A�

1;qq0 �q0
1�A

�
2;qq0 �q0

1��
f�"q0 � � f�"q�

i�n � �"q � "q0 �

�
g2

2

X
q;q0

�
Ba1;qq0 �q1�
Ba2;qq0 �q1�

�
�Ba�1;qq0 �q0

1�B
a�
2;qq0 �q0

1��
1� f�"q� � f�"q0 �

�i�n � �"q � "q0 �

�
g2

2

X
q;q0

�
Bb1;qq0 �q1�
Bb2;qq0 �q1�

�
�Bb�1;qq0 �q0

1�B
b�
2;qq0 �q0

1��
1� f�"q� � f�"q0 �

i�n � �"q � "q0 �
; (5)
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FIG. 2. Spectrum of two quadrupole modes q� � �2 at T �
15 nK for � � 0:005!r (a). The imaginary part of the self-
energy for the quadrupole mode q� � �2 (b) and q� � �2
(c) at T � 0, 5, 10, and 15 nK. The peak around ! � 1:3!r
corresponds to the Beliaev process �q� � �2; qz � 0� !
��1;�2� � ��1;�2�.
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which determines the excitation and its damping. In
Eq. (5), the first term describes Landau processes: q0

1 �
q0 ! q ! q1 � q0, while the second and third terms cor-
respond to Beliaev processes: q0

1 ! q� q0 ! q1. The
matrix elements A and B are the overlap integrals of the
condensate and the excitation amplitudes. The ultraviolet
divergence in  and ��2� is removed because we use the
contact potential approximation for the T matrix rather
than the bare potential [16]. The frequency spectrum of
the collective modes is given as

S�!� � �
Z
dr

Z
dr0F�

Q�
�r�ImDR�rr0; !�FQ�

�r0�: (6)

In the case of the surface mode (Qr � 0), the general
excitation operator is given as FQ�

� rjQ�jeiQ�� [17].
We take up the quadrupole excitation experiment on

87Rb atoms by Bretin et al. [9]. Assuming their long-cigar
system as a cylinder, we introduce a cylindrical coordi-
nate: r � �r; �; z�. The quantum number q � �q�; qz; qr�
may take the following values: q� � 0;�1;�2; . . . ,
qz � 0;�2,=L;�4,=L; . . . , and qr � 0; 1; 2; . . . , where
L is the period of the length along the z axis [12] and we
take L � 15 �m. The linear density along the z axis can
be estimated as nz � 6� 109=m with the radial trap
frequency !r=2, � 97:3 Hz (Tc � 200 nK). At finite
temperatures, we use the chemical potential � to fix the
total number.

In Fig. 2(a) we show S�!� in the frequency region
near the quadrupole excitations !�2. The two resonance
peaks are seen from it. The peak around ! � 1:55!r
corresponds to the main resonance of the quadrupole
mode q� � �2, while the other mode q� � �2 has a
peak around ! � 1:3!r. These resonance frequencies
correspond to the observations (!�2=2, � 159:5�
1:0 Hz ’ 1:6!r=2,, !�2=2, � 116:8Hz ’ 1:2!r=2,).
The damping rates of two quadrupole modes  �2�!�
can be estimated by the shape of the spectrum S�!�. We
see that at T � 15 nK the value of two damping constants
 �2 at each resonance is  �2 >  �2, which is evidence
that the counter-rotating mode decays faster than the
other corotating mode and qualitatively agrees with the
observation [9].

The width of S�!� comes from the imaginary part of
the self-energy �̂��2� in Eq. (5) and the dominant matrix
element ��2�

11 for q� � �2 and q� � �2 is shown in
Figs. 2(b) and 2(c). For the quadrupole mode q� � �2,
only the Landau process ��2; 0; 0� � �q�; qz; qr� ! �q� �
2; qz; q0r� is active as in the vortex-free case. Thus the
damping constant for q� � �2 is nearly the same for
both single-vortex and vortex-free cases. This is exactly
seen by Bretin et al. [9]. On the other hand, the Beliaev
process exclusively dominates the damping of the q� �
�2 mode because, as mentioned before, ( � 2, 0, 0) can
decay into the two dipole modes !�1 by conserving the
angular momentum and the total energy. As is seen from
Fig. 2(b), for q� � �2, there is a single peak due to this
180401-3
particular Beliaev process at !� 1:3!r while for q� �
�2 there is no prominent peak around the resonance !�
1:55!r Fig. 2(c). As T increases, the Landau processes
becomes effective, giving rise to the satellite peaks in
addition to the main peak as shown in Fig. 2(b). On the
other hand, as T decreases, the Landau process quickly
vanishes, leaving only the particular Beliaev process
active. This should be checked experimentally.

The created modes via the Beliaev process of the
counter-rotating quadrupole mode q� � �2 can be iden-
tified to the so-called anomalous mode [12,13], or Kelvin
mode characterized by the quantum number q� � �1,
qr � 0, and �~qqz � 4,=L as shown in Fig. 1(b). This
dipole mode is counter-rotating to the vortex flow direc-
tion. Since this mode has the zero-relative angular mo-
mentum to the condensate, the wave function u�r; z� �
uq���1�r�e

iqzz does not vanish at the center r � 0 and
localized at the core while all other wave functions
with q� � �1 vanish at r � 0. In Fig. 3 we display the
condensate j��r; z�j and the wave function of the Kelvin
mode with ~qqz � �4,=L, which is created by decay of the
counter-rotating quadrupole mode. One can see that this
anomalous mode with a negative eigenvalue at qz � 0,
which is first identified theoretically by Isoshima and
Machida [12] and Dodd et al. [13], is localized within
180401-3
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FIG. 3. Spatial profiles of the condensate j��r; z�j (a) and
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�4,=L (b).
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the core region along the radial direction whose scale is
the coherence length. The characteristic wave number
~qqz � 4,=L approximately corresponds to the observation
[9]. These particular features, the localization around the
core in the radial direction and propagation along the
vortex line direction, are exactly what Bretin et al. [9]
have detected. Since there is no core localized mode other
than this q� � �1 mode [12], we conclude that a pair of
these anomalous modes with ~qqz and �~qqz are created. Thus
the Kelvin wave, or the wave motion of the vortex line
propagating along z axis, is now identified and imaged by
their experiment (see Fig. 3 in Ref. [9]).

In the following we consider several situations to
help identifying the Kelvin mode: Let us first consider
the external rotation effect on the decay process. Under
the external rotation frequency �rot, !�2��rot� � !�2 �
2�rot as is seen from Eq. (2) [2]. Accordingly, the spectral
response function S�!� shown in Fig. 4 exhibits; (i) The
two resonances switch their positions at around �rot ’
0:05!r, and (ii) the resonance widths become comparable
as �rot increases. It is due to the suppression of the
Beliaev decay; Under the rotation the energy of the rele-
vant modes with q� � �1 and �2 increases according to
the rule !q���rot� � !q��0� � q��rot. Because of the
Bose factor the population of these modes decreases.

The finite temperature affects both Beliaev and Landau
processes. As increasing T, !�1�T� is known to be larger
while !�2�T� is relatively independent of T except the
region near Tc [18]. Thus ~qqz�T� becomes small with T and
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FIG. 4. The external rotation effect on spectrum of the co-
and counter-rotating quadrupole modes at 15 nK.
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above some critical temperature the Beliaev process
!�2 ! !�1�~qqz� �!�1��~qqz� ceases to exist, unabling
to create the Kelvin modes as the decay channel of
!�2. Generally the Landau process for both !�2 modes
becomes important as T increases because thermally
excited modes become more available.

In Bretin et al. experiment [9] the counter-rotating!�2

mode is used to excite the Kelvin mode via the Beliaev
process. It is also possible to use the monopole mode !0

to create the Kelvin mode, namely !0 ! !�1�~qqz� �
!�1��~qqz�. This provides yet another spectroscopic
method to analyze the Kelvin mode.

In conclusion, we have demonstrated that the Kelvin
mode as a propagation wave along a vortex line can be ex-
cited via Beliaev decay processes for the counter-rotating
quadrupole mode. It enables us to understand the experi-
ment by Bretin et al. [9] successfully, namely, their reso-
nance position and width, and to predict the external
rotation and temperature effects. We have also shown
that utilizing these decay channels provides a novel spec-
troscopic method for low-lying Bosonic excitations in a
vortex, in particular, the unexplored Kelvin mode.
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