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Oscillatory Turing Patterns in Reaction-Diffusion Systems with Two Coupled Layers
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A model reaction-diffusion system with two coupled layers yields oscillatory Turing patterns when
oscillation occurs in one layer and the other supports stationary Turing structures. Patterns include
‘‘twinkling eyes,’’ where oscillating Turing spots are arranged as a hexagonal lattice, and localized
spiral or concentric waves within spotlike or stripelike Turing structures. A new approach to generating
the short-wave instability is proposed.
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reaction-diffusion systems arise from a wave instabil-
ity, which requires unequal diffusivities of chemical spe-

species. We translate our scheme into a five-component
reaction-diffusion model:
Turing patterns [1–3] typically consist of hexagonal
arrays of spots or labyrinthine arrangements of stripes
with a single characteristic wavelength. Recently, two-
wavelength Turing patterns, referred to as ‘‘black-eye’’
patterns, have been reported in experiments [4,5]. We
have shown [6] that spontaneous formation of black-eye
patterns in a homogeneous two-dimensional reaction-
diffusion system may arise from spatial resonance be-
tween two Turing modes and that other resonant patterns,
as well as superposition patterns, are also possible.
Several of these results have been verified in experiments
in which a single Turing mode is subjected to external
spatially periodic forcing [7].

Classical Turing patterns are stationary. However, the
‘‘twinkling eye’’ is an oscillatory Turing pattern [6], in
which eyelike Turing spots are arranged in a hexagonal
lattice, and each spot periodically oscillates 120� out of
phase with its nearest neighbor spots. Unlike standing
waves, which in reaction-diffusion systems are associ-
ated with the short wavelength instability (wave insta-
bility), the twinkling-eye pattern is a mixed-mode
pattern, which originates from the interaction between a
subharmonic Turing mode and an oscillatory mode [6]. In
this Letter, we examine the possibility that the interaction
of stationary Turing and oscillatory wave modes may lead
more generically to a family of oscillating Turing-like
patterns.

Several earlier investigations of interacting Hopf and
Turing instabilities have been reported [8,9], and we have
studied pattern formation resulting from interacting
Turing and wave instabilities [10]. A key difference is
that in those works the two modes are typically well
separated, with the Hopf or wave instability appearing
at significantly lower wave number than the Turing mode.
Here, the two instabilities may overlap, and the Turing
mode can have the lower wave number, resulting in a
wealth of new patterns.

Standing waves are well known in electromagnetic and
mechanical systems, but standing waves of chemical
concentrations are rarely observed. Standing waves in
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cies. Although standing waves have been seen in
binary fluid convection, nematic liquid crystals, and het-
erogeneous chemical and electrochemical systems [11],
it is difficult to satisfy the condidtions for their ap-
pearance in homogeneous reaction-diffusion systems
like the Belousov-Zhabotinsky (BZ) reaction [10]. This
problem may be solved by employing two coupled
thin layers. Reactants in each layer have the same diffu-
sivity, but they may be slowed significantly in one layer
compared with the other because of physical (e.g., vis-
cosity) or chemical (e.g., complex formation with gel-
bound species [12]) reasons. We demonstrate that the
wave instability can arise through this layer-coupling
mechanism.

In our earlier work [6] we modeled the twinkling-eye
pattern with an abstract Brusselator scheme involving
cubic autocatalysis. Here we consider a more realistic
model: an extended Oregonator with quadratic auto-
catalysis that mimics the BZ reaction and has been used
to study Turing-wave interaction [10] as well as inwardly
propagating spirals (antispirals) in a BZ microemulsion
[13]. Our model here consists of two linearly coupled
extended Oregonators. Reproducing the twinkling-eye
pattern indicates that the complexity of pattern formation
stems primarily from the coupling and differential dif-
fusivity, rather than from the details of the chemical
kinetics.

The experimental arrangement that corresponds to our
model is shown in Fig. 1. The layers at the top and the
bottom are reaction layers, while the middle layer pro-
vides the coupling.We consider two reactive species. One,
the ‘‘free’’ species, diffuses through the coupling layer,
but the other,‘‘partner,’’ is confined to the reactive layers.
The variables x (top), r (middle), and u (bottom) desig-
nate the concentration of the free species in the three
layers. The partner concentrations are z (top) and w
(bottom). Because there is no partner in the middle layer,
no reaction occurs there. Such a situation might be real-
ized experimentally with a sandwich of three mem-
branes, in which the middle one is impermeable to one
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FIG. 1. A system of coupled layers with two-sided feeding,
described by models (1)–(5).
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where the diffusion coefficients Dx, Dz, Dr, Du, and Dw
characterize two-dimensional horizontal motion within
the layers. The functions F and G describe the reaction
kinetics, for which we employ a simple two-variable
Oregonator model [14], specified in Eqs. (6) and (7).
The terms involving � and � give the time scale of the
linear coupling between top and bottom layers via local
vertical diffusion:

F�x; z� �
1

�

�
x� x2 � fz

x� q
x� q

�
; (6)

G�x; z� � x� z: (7)

The kinetic parameters �, f, and q are from the
Oregonator model [14]. The function F is identical to F,
except that the kinetic parameters for the top and bottom
(�; f; q) layers may differ because the layers are fed with
different concentrations of reactants.

The top and bottom layers may show different insta-
bilities when uncoupled because their parameters differ.
Physically, the gels may be prepared or fed differently,
different membranes may be used, or one may subject
the layers to different intensities of illumination. The
strength of the coupling, characterized by the � parame-
ters, may be controlled by adjusting the thickness of the
middle layer.

We applied linear stability analysis to the five-
component model (1)–(5) to obtain dispersion relations.
This analysis indicates that onset of a Turing instability
in the bottom layer is determined by the ratio Du=Dw, and
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its location, kc, is determined by the product, DuDw. The
Turing instability also depends on the chemical feed,
which is characterized by the control parameter pair
(�; f). The top layer serves as a wave layer, where waves
emerge from a Hopf or wave instability, and the insta-
bility is controlled by the feed, i.e., by (�; f).

We performed a series of two-dimensional simula-
tions; in each, the initial condition was always a small
amplitude random perturbation of the uniform steady
state, and patterns developed spontaneously. When the
system reached a stable state (stationary or oscillatory),
we took a snapshot with gray levels linearly propor-
tional to the free species concentration and white (black)
corresponding to high (low). The physical size of the
system was 256
 256 space units unless otherwise speci-
fied. Periodic boundary conditions were employed in all
cases.We fixed parameters q � q � 0:01 and set coupling
parameters � � 2�, � � 2� for simplicity. The feed pa-
rameter pairs (�; f) or (�; f) served as our control
parameters.

A typical oscillatory Turing pattern arising from in-
teracting oscillatory and Turing modes is shown in Fig. 2.
A Turing structure consisting of hexagonally arranged
spots quickly develops [t � 120 in Fig. 2(c)], but, instead
of maintaining a constant concentration, each Turing spot
begins to oscillate [t � 500 in Fig. 2(c)]. During the
oscillation, the spots adjust their locations to form a
hexagonal lattice [Fig. 2(a)], and their phases, randomly
distributed initially, gradually synchronize. The synchro-
nized oscillation breaks the original spatial symmetry,
D6, into three subgroups of symmetry D3 [Fig. 2(b)]. The
three subgroups oscillate with the same frequency and
amplitude, but with phase difference 2�=3 [Fig. 2(d)],
and wavelength

���
3

p
longer than that of the original lattice.

We call such patterns twinkling-eye patterns [6,15].
The evolution of this pattern can be followed at a single

point in the center of a spot [Fig. 2(c)]. We clearly see
three distinct stages: uniform steady state, stationary
Turing pattern, and oscillatory Turing pattern, with the
two transitions between the states. We emphasize that this
twinkling-eye pattern arises spontaneously from the ho-
mogeneous steady state due to the Turing instability. The
transition from the stationary to the oscillatory Turing
pattern is also spontaneous, indicating that the stationary
Turing structure is only metastable. Its instability results
from coupling to the oscillatory mode. The dispersion
relation [Fig. 2(e)] shows that the most positive mode is a
Turing instability, so that the Turing structure grows
quickly. The second instability is a wave instability,
which generates the oscillation. The symmetry breaking
of the D6 hexagonal lattice arises from the subharmonic
Turing mode, which is close to onset.

The twinkling-eye pattern is the only stable solution
for this set of parameters. All initial conditions — bulk
oscillation, Turing structure, uniform steady state, or
random — reach this same final state, which is stable to
perturbation and persists indefinitely.
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FIG. 3. Waves on Turing structures. Common parameters are
Dx � Dz � Dr � 0:1, Dw � 100. Sizes: (a),(c) 128
 128;
(b) 256
 256. (a) Isolated spirals or targets on hexagonal
array of Turing spots. ��; f� � �0:14; 16�, ��; f� � �0:4; 1:1�,
Du � 5. (b) Traveling waves on labyrinthine stripelike
Turing structure. ��; f� � �0:14; 1:6�, ��; f� � �0:3; 0:7�, Du �
10. (c) ‘‘Pinwheels’’ with short spiral waves rotating around
oscillatory cores arranged as a honeycomb hexagonal lattice.
��; f� � �0:215; 1:1�, ��; f� � �0:5; 0:65�, Du � 3. (d) Three
typical Turing structures: honeycomb, stripes, and spots are
shown in a bifurcation diagram of the isolated (half) system.
�Du;Dw� � �3; 100�.

FIG. 2. Formation of a twinkling-eye pattern. Simula-
tion with random initial conditions, parameters ��; f� �
�0:23; 1:4�, ��; f� � �0:5; 1:1�, and diffusion coefficients
�Dx;Dz;Dr;Du;Dw� � �0:17; 0:17; 6; 0:5; 12�. Snapshot (a) of
u (bottom layer) shows a hexagonal spotlike Turing structure
(�0 � 12:8). Snapshot (b) of x (top layer) shows three sets of
sublattices (� �

���
3

p
�0). (c) Concentration changes from uni-

form steady state (SS) to stationary Turing to oscillatory
Turing at a single point. (d) Three-phase oscillations at points
A, B, and C of (b). The spatial average of x is nearly constant
and close to the steady state value, xSS � 5:75
 10�2.
(e) Dispersion curves of the two most positive eigenvalues.
The most positive mode is a Turing instability. The second
mode is a short wave instability, which coincides with a
subharmonic Turing mode (sub-T). The right-hand plot is the
imaginary part corresponding to the most positive eigenvalue.
Oscillation period T � 2�=! � 3:9.
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As the wavelength of the Turing patterns changes,
other types of oscillatory Turing patterns can be found.
For long Turing wavelengths, short wavelength traveling
waves appear on the Turing structures. Figure 3 shows
three examples of this phenomenon [15], where the
Turing wavelength is about 4 times longer than that of
178303-3
the traveling waves. Isolated stable spirals or sustained
concentric waves (targets) can be seen on a spotlike
Turing structure in Fig. 3(a). Traveling waves, which
begin as localized spirals, propagate along labyrinthine
Turing stripes in Fig. 3(b). The example in Fig. 3(c) shows
short wavelength spiral waves rotating around the oscil-
latory core to form ‘‘pinwheels,’’ where the honeycomb
Turing spots arise first, arrange themselves into a hex-
agonal lattice, then begin to oscillate, and finally develop
spirals centered at their cores. The location of the three
types of typical Turing structures, spots, stripes, and
honeycomb, is shown in a bifurcation diagram in Fig. 3(d).

Stable spirals and sustained concentric waves (targets)
are both generated from the wave instability, which de-
termines their common frequency. Since they have the
same frequency, they can coexist, unlike the situation in
excitable media, where spirals generally have higher fre-
quency, and hence annihilate the lower frequency targets.

To our knowledge, the hexagonally arranged isolated
spirals and targets in Fig. 3(a) and the ‘‘pinwheel’’ spirals
in Fig. 3(c) have not previously been observed. The pat-
tern in Fig. 3(b) resembles that seen in experiments in
which waves in a photosensitive BZ system are guided
by a feedback-controlled pattern of illumination [16].
However, our pattern appears spontaneously from the
homogeneous uniform state, without any preset pat-
tern or illumination control, with the waves propagating
through the labyrinthine ‘‘channel’’ created by the Turing
instability.
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FIG. 4. Short-wave instability resulting from coupling a Hopf
oscillation and a stationary Turing solution. (a) and (b) are
dispersion relations of the uncoupled systems showing the real
part of the most positive eigenvalue. (c) is the dispersion
relation of the coupled layer, where an additional wave insta-
bility appears. Parameters are as in Fig. 3(c).
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The waves in each of the cases in Fig. 3 result from a
short-wave instability. Since the short-wave instability
generally requires at least three species and at least two
levels of diffusivity, one may ask how the instability can
arise here with equal diffusion coefficients in the wave
layer. Clearly, we cannot have the short-wave instability
in the uncoupled homogeneous reaction-diffusion system.
With the parameters of Fig. 3(c) and equal diffusion
coefficients, the dispersion relations exhibit only a Hopf
instability in the uncoupled top layer [Fig. 4(a)], a Turing
instability in the uncoupled bottom layer [Fig. 4(b)], and
both Turing and wave instabilities in the full system
[Fig. 4(c)].

The coupled pattern configuration offers an approach
to another challenge, producing standing waves via a
short-wave instability in a BZ system. Generating the
short-wave instability in homogeneous oscillatory reac-
tions is difficult, because all reactants tend to diffuse at
roughly equal rates. In our model system with spatially
separated coupled layers, if reactants diffusing in one
layer can be slowed significantly compared with the other
layer, the coupling can generate a wave instability when
the uncoupled layers support oscillatory and stationary
(Turing or steady state) modes, respectively. It should be
possible to implement such a configuration experimen-
tally by coupling layers of very different viscosity. Alter-
natively, if the wavelength of the Turing pattern is short
compared with that of the wave mode, modulated pat-
terns arise [10].

We have proposed a model that mimics a reaction-
diffusion system with two coupled layers to study pattern
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formation. A novel type of oscillatory Turing pattern is
spontaneously formed from interaction between a Turing
mode and an oscillatory mode in the two layers. Depend-
ing on the wavelength and the structure of the Turing
pattern, we find twinkling eyes (Fig. 2), localized spiral
or localized concentric waves [Figs. 3(a) and 3(b)], or
pinwheels [Fig. 3(c)]. Obtaining oscillatory Turing pat-
terns experimentally may be most easily accomplished in
the chlorite-iodide-malonic acid reaction [12]. The pro-
posed configuration should also make it possible to pro-
duce wave instability and standing waves by coupling an
oscillatory layer with a stationary layer in the classic BZ
reaction.
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