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Thermal Fluctuations and Positional Correlations in Oriented Lipid Membranes
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We have determined the positional correlation functions in aligned stacks of fully hydrated
phospholipid bilayers from the thermal diffuse scattering measured by nonspecular x-ray reflectivity.
While fair agreement can be obtained between experiment and linear smectic theory at length scales
above 120 Å, significant deviations occur at small r, which are tentatively attributed to collective
protrusion modes.
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the Bragg peaks, which is often suppressed by finite size
effects [5,7]. We then ask to what extent the linear model

Data have been collected on a well characterized phos-
pholipid system: the zwitterionic, neutral phospholipid
Elasticity, thermal fluctuations, and interaction forces
of biomimetic lipid membranes in the fluid L� phase have
long been under investigation. Since equilibrium phases of
stacked bilayers or multilamellar vesicles with lamellar
periodicity d exhibit smectic-A liquid crystalline sym-
metry, the physical properties are usually discussed in the
framework of liquid crystal (LC) physics. The character-
istic positional correlation functions in such systems are
derived from the linearized smectic free energy func-
tional (Hamiltonian) [1–5],
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where � denotes the bilayer bending rigidity, A the area in
the xy plane, N the number of bilayers, and un the devia-
tion from the mean average position nd of the nth bilayer.
B and K � �=d are elastic coefficients, governing the
compressional and bending modes of the smectic phase,
respectively. Equation (1) is called the discrete smectic
Hamiltonian, in contrast to the continuum (Caillé)
model, where the sum over n is replaced by an integral.

As shown by the seminal work of Safinya and co-
workers, x-ray scattering and line-shape analysis carried
out on aqueous (bulk) suspensions give access to B and
K � �=d [2]. For �� kT, however, which is the typical
case for phospholipid systems [6], only the combination
of parameters
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is accessible by measurement of the

line-shape exponent � � �kT=2d2
��������
KB

p
. Moreover, as-

sumptions have to be made on the precise nature of the
correlation functions, and it is not possible to assess over
which range of length scales the model applies. The main
reason for this shortcoming is the loss of information
inherent in powder averaging over the unoriented lamel-
lar domains [2].

In this Letter we show that K�T� and B�T� can both be
determined independently even for relatively stiff sys-
tems �� kT. Importantly, the analysis does not rely on
the characteristic power-law divergence in the vicinity of
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Hamiltonian is applicable to fully hydrated and fluid
phospholipid systems. We recall that linear smectic elas-
ticity (with additional surface tension terms) has been
extremely successful in describing a series of beautiful
quasistatic and dynamic experiments on freestanding
films of smectic LC compounds [8,9].

Independent of any specific model, the statistical
height-height displacement functions (or correlation
function) can be written as gij�r� � h
ui�r0� � uj�r0 �
r��2i. The correlation functions are characterized by
two length scales, corresponding (i) to the maximum
lateral wavelength of fluctuations �max and (ii) the verti-
cal damping length ��qr� over which fluctuations of
lateral wave number qr �

�����������������
q2x � q2y

q
are correlated. The

two length scales are related: in a film of finite thickness
D on a flat substrate, equilibrium fluctuations are excited
only on length scales r � �max, for which ��2�=r� � D.
Thus, on length scales r� �max the fluctuations are
governed by the film interfaces, and the bilayers are
essentially flat. Contrarily, on small length scales r�
�max the fluctuations are not affected by the film bounda-
ries and should be described by the bulk Hamiltonian.

From Eq. (1), Lei and co-workers have computed gij�r�
as [4]
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with the exponent � � �kT=2d2
��������
KB

p
and � �
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K=B

p
.

The height-height self-correlation function g�r� � gii�r�
is of particular interest. Expressed in natural units R �
r=�s, it can be approximated by g�R�=��d2=2�2� �
R2�1:115 93� ln
R�� for small r � �s, and by
g�R�=��d2=2�2� � ln
R2� � 1:154 43 for r � �s. �s �������
�d

p
is a crossover length below which the bilayer fluc-

tuates independently from its neighbors. In the limit r �
�s, g�r� diverges logarithmically as is well known from
the continuum (Caillé) model [3].
2003 The American Physical Society 178101-1



P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2003VOLUME 90, NUMBER 17
dimyristoyl-sn-glycero-phosphocholine (DMPC, Avanti
Lipids, AL). The sample preparation has been described
somewhere else [7,10], resulting in an average number of
N ’ 800 bilayers with lateral domain sizes in the range of
100  m and highly oriented with respect to the substrate.
The low FWHM � 0:02� was preserved after filling the
sample chamber with water and swelling the membranes
to their equilibrium values in excess water [10]. Thus, in
contrast to [7], full hydration was reached.

The experiments were carried out at the undulator
beam line ID1 of the ESRF (European Synchrotron
Radiation Facility) in Grenoble, using a collimated
x-ray beam of 20 keV photon to traverse the 18 mm of
bulk water in the temperature-controlled chamber with a
2d multiwire gas detector positioned at 4000 mm behind
the sample; see Fig. 1. The angle of incidence was kept
constant at �i � 0:43� ’ 5�c, placing the specular beam
between the two first diffuse Bragg sheets n � 1; n � 2 at
2�=d and 4�=d, respectively, so that no specular Bragg
peak was excited.

From the peak positions, a well-defined lamellar pe-
riodicity of d � 64:3 �A is inferred [11], with a bilayer
thickness of about dbl � 37 �A. The height-height corre-
lation functions are assessed by evaluating the intensity
matrix along the different principal axes, e.g., along the
horizontal (Fig. 2) or vertical (Fig. 3) axis. As has been
shown previously, the measured diffuse scattering can be
written as a unique transformation of the gij�r� [12].

Horizontal slices, e.g., slices limited by the horizontal
dotted lines in Fig. 1, have been evaluated to quantify the
decay of the diffuse scattering with qr for n � 1; 2. The
integration in qz (corresponding to the vertical width of
the slice) can be increased to approximately cover one
Brillouin zone ��=d. In this case, it can be shown that
the contributions of the cross-correlation terms i � j
cancel [13], and one is left with a curve, which corre-
sponds to the transform of an average height-height self-
correlation function [7]. The data thus correspond to the
averaged structure factor S�n; qr� of a bilayer in the stack,
measured at the order n. In the limit of small qz& the
curves should overlap for all orders n and be proportional
FIG. 1. Sketch of the setup with the typical intensity pattern
on the 2D detector.
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to the bilayer power spectral density (PSD). Here &
denotes the rms-fluctuation amplitude measured over lat-
eral distances �max. At finite qz&, the intensity decay still
contains the information on the PSD, but is no longer a
simple Fourier transform of the PSD [12].

As an example, Fig. 2(a) shows the decay of the inte-
grated intensity with qr for n � 1; 2, respectively, for
DMPC at T � 41:8 �C. At small qr � q�r a plateau is
observed, with q�r increasing with n. This characteristic
shift can be analyzed to determine & [14]. At high qr a
power-law behavior S�qr� / q

�'
r is observed, with ' �

2:71� 0:03 for the first and ' � 2:70� 0:03 for the
second Bragg sheet, respectively. This is in striking con-
trast to the ' � 2� � behavior expected for a simple
logarithmic correlation function g�r� according to linear
smectic elasticity theory (continuum model) [3], and also
in contrast to an asymptotic ' � 4 power law, which is
the prediction of the discrete smectic model for qr.

Figure 2(b) shows the result for gexp�r� (open circles) as
obtained by numerical back transformation (inversion)
[7,15] of the experimental data [in Fig. 2(a)]. In order to
perform the transform, the power-law regime in the
curves of Fig. 2(a) has to be extrapolated to qr ! 1.
FIG. 2. (a) Horizontal cut through the 2D intensity array,
yielding the structure factor S�n; qr� of an average bilayer along
with power-law fits (solid lines), and (b) the corresponding
correlation function (open circles) along with g�r� according to
Eq. (2) (solid line), as well as an asymptotic power law (dotted
line).
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FIG. 3. (a) Cuts through the n � 1 diffuse Bragg sheet along
qz at different qy, showing a characteristic broadening of the qz
width (FWHM), quantified in (b) as a function of qr, along
with a parabolic fit (solid line).
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Since the structure factor S�qr; qz ’ n2�=d� is not given
on an absolute scale, the experimental curve gexp�r� can
be determined only up to an arbitrary prefactor. However,
the requirement that the transform of both Bragg sheets
n � 1 and n � 2 must give the same function gexp�r� fixes
this prefactor and thus the rms amplitude & of the height
fluctuations. Accordingly, the correlation function first
increases as gexp�r� / r0:71, and then saturates for r �
�max ’ 600 �A at 2&2 ’ 133� 15 �A2, from which a value
of & � 8:1� 0:5 is obtained. The power-law increase
with an exponent of 0:71 can be directly related to the
asymptotic behavior of the data in Fig. 2(a), independ-
ently confirming the numerical analysis.

We now compare the experimental result gexp�r� to the
theoretic prediction of the discrete smectic model g�r�. To
this end, we must keep in mind that the theoretic form is
derived for infinite bulk samples, while the experimental
function saturates at a value of 2&2 for r � �max, due to
finite D. Agreement should therefore be sought only for
r � �max. A fair degree of overlap between gexp and g�r�
is achieved for the parameters � � 25 �A and � � 0:072;
see the solid line in Fig. 2(b). Along with d these values
correspond to a crossover length of �s � 40 �A from in-
dependent single bilayer to conformal smectic fluctua-
tions. Note, however, that significant deviations between
the experimental and theoretic curves are observed, in
particular, at small values r ’ �s. As discussed above,
Eq. (2) predicts a power-law regime of g�r� / r2 for small
r � �s, which crosses over to logarithmic behavior at
r � �s, in contrast to the measured exponents [visible
both in the S�qr� and the gexp�r� curves].

After analysis of the height-height self-correlation, we
now turn to the height-height cross correlations, encoded
in the qz profiles of the diffuse Bragg sheets. Figure 3(a)
shows a series of cuts through the n � 1 Bragg sheet
along qz at constant qy (DMPC, T � 41:82 �C), i.e.,
along the directions indicated by the vertical dotted lines
in Fig. 1, illustrating the peak width (FWHM) and line
shape along qz. The Lorentzian fits (solid lines) indicate
an exponential decrease of the cross correlations along z
with a characteristic length scale � � 2=FWHM. The
FWHM increases with qy, reflecting a dependence of
the cross-correlation length � on the wave number qr of
the height fluctuations or, conversely, the lateral length
scale of the fluctuation. Smectic elasticity predicts � �
1=�q2r��. To verify this relationship, we have plotted
FWHM versus qy [16] in Fig. 3(b), along with a least-
squares fit to FWHM � �q2r � �res, where �res accounts
for the instrumental resolution. Clearly, we see that the
data validate the parabolic relationship and can be ana-
lyzed to give the coefficients �1;2 for n � 1; 2, respec-
tively [17].

The fitting results for ��T� are plotted as a function of
T in Fig. 4(a). Note that the gel-fluid phase transition
(P0
) ! L�) appears in the form of a jump in �. Aside

from �, a second length scale is given by the rms fluctua-
tions of the bilayers. To this end, we evaluate the fluctua-
178101-3
tion amplitude corresponding to the lateral length scale
�s, i.e., &2

s :� gexp��s�=2, shown in Fig. 4(b) as a function
of T. The values can be calculated by the back trans-
formation algorithm, or alternatively from the asymptotic
form gasy�r� � cr2h, which in turn is directly obtained
from the measured S�n � 2; qr� curves [14]. An effective
� is then determined from the prefactor needed to scale
the theoretic curve g�r� � ��d2=2�2�G�r� to the experi-
mental curve. Specifically, overlap is sought in the range
r ’ 2d, where the functional form is found to agree well,
in contrast to the systematic deviations at smaller r; see
Fig. 2(b), and discussion below. Note that Fig. 4(b) shows
the same data points, which can alternatively be read off
as &2

s (left axis) or � (right axis), due to the correspond-
ing proportionality. Finally, from � and the effective
parameter �, effective parameters B�T� and ��T� can be
calculated directly, as shown in Fig. 4(c). ��T� ’ 18kT is
found to stay approximately constant over the whole
range of T in the fluid phase except for a small decrease
in the vicinity of the main phase transition T ’ 23:5 �C.
Contrarily, B is found to decrease linearly with T in the
fluid phase, indicating a corresponding softening of the
interbilayer potential with T.

Extrapolating the linear regime to high T, B would
vanish around T ’ 110 �C. The decrease in B may be
linked to the previously observed transition from a bound
state to an unbound state, where the multilamellar mem-
branes detach from the substrate and get dispersed into
the aqueous bulk [10]. As a precursor effect to this tran-
sition, the interbilayer potential f�d� appears to soften,
resulting in a more shallow minimum B � d0@2f=@d2jd0 .

To our knowledge, this is the first independent meas-
urement of both elasticity coefficients for a pure
phospholipid system without softening additives [6].
In contrast to optical measurements, lateral length
scales below �max ’ 600 �A are probed to determine �.
178101-3



FIG. 4. T dependence of the elasticity coefficients and fluc-
tuation amplitude: (a) ��T�, (b) &2

s�T� or equivalently ��T�
(right axis), and (c) ��T� (full circles, left axis) and B�T� (open
squares, right axis).
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However, the derived coefficients have to be regarded as
effective parameters, which describe the fluctuation spec-
trum only partially. Systematic deviations from linear
smectic elasticity behavior cannot be overlooked in com-
paring gexp�r� to the theoretic curve, in particular, for
small r. In this range the fluctuation amplitude is stronger
than predicted. This ‘‘excess amplitude’’ may be related
to collective modes other than bending, such as protru-
sion modes or peristaltic modes of the bilayer, which are
not contained in Eq. (1). Collective protrusion modes
have been studied theoretically [18], and Monte Carlo
(MC) simulations have indeed shown that the fluctuation
spectrum can be dominated by protrusion modes up to
lateral distances of the bilayer thickness [19]. However, in
contrast to the crossover from ' � 4 (independent bilayer
regime) to ' � 2 (collective protrusion) predicted by the
single bilayer model of [19], the measured value is ' �
2:7 for the structure factor of an average bilayer in the
multilamellar stack. Further MC simulations could help
to understand whether collective protrusions or peristaltic
modes can be coupled between adjacent bilayers, and
whether this can explain the observed exponent. Note
that the present experiment is sensitive to collective bi-
layer motions, while previous measurements of molecular
protrusion by incoherent neutron scattering [20] are in-
sensitive to any collective effects. In summary, we note
178101-4
that on short length scales phospholipid membrane fluc-
tuations are distinctly different from those of liquid crys-
talline model compounds [8,9], and that the deviations
are probably due to collective protrusion modes. We spec-
ulate that these collective molecular motions close to the
molecular scale are relevant in biological interactions.
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