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Quantum Antiferromagnetism in Quasicrystals
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The antiferromagnetic Heisenberg model is studied on a two-dimensional bipartite quasiperiodic
lattice. Using the stochastic series expansion quantum Monte Carlo method, the distribution of local
staggered magnetic moments is determined on finite square approximants with up to 1393 sites, and a
nontrivial inhomogeneous ground state is found. A hierarchical structure in the values of the moments
is observed which arises from the self-similarity of the quasiperiodic lattice. The computed spin
structure factor shows antiferromagnetic modulations that can be measured in neutron scattering and
nuclear magnetic resonance experiments. This generic model is a first step towards understanding
magnetic quasicrystals such as the recently discovered Zn-Mg-Ho icosahedral structure.
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FIG. 1. Approximants of the octagonal tiling. (a) Deflation
from 239 (thin lines) to 41 (thick lines) sites. (b) These six
model, ‘‘Heisenberg stars’’ are the local building blocks.
Quantum magnetic phases of low-dimensional antifer-
romagnetic (AF) Heisenberg systems are known to show
various degrees of disorder caused by zero-point fluctua-
tions. For example, isolated spin-1=2 chains have quasi-
long-ranged antiferromagnetic order [1], whereas two-leg
ladders are short-range ordered [2], and true long-range
order is found in the two-dimensional square lattice [3].
While these states are homogeneous due to the transla-
tional invariance of the underlying lattice, it is interesting
to explore how nonperiodic environments, such as pro-
vided in quasicrystal structures, affect the magnetic prop-
erties of quantum magnets [4,5]. Naturally, it can be
expected that instead of a uniform order parameter,
such as the staggered magnetization in a Heisenberg
antiferromagnet, there will be instead a distribution of
local order parameters. The magnitude of each local mo-
ment may, for example, strongly depend on its environ-
ment. In a local viewpoint, the magnetic moments on
sites with greater coordination numbers are expected to
be suppressed due to increased magnetic screening by
their neighbors [6]. This picture will be modified by the
quasicrystalline equivalent of nonlocal spin-wave excita-
tions, leading to a nontrivial distribution of the order
parameters. Recent inelastic neutron scattering experi-
ments on the Zn-Mg-Ho isocahedral quasicrystal [7]
have revealed an antiferromagnetic superstructure, which
fits very well with the antiferromagnetic Heisenberg
model. As opposed to magnetic quasicrystals with itiner-
ant charge carriers [8], the electrons appear well local-
ized in this material, and display an antiferromagnetic
modulation with a large wave vector at temperatures
below 6 K, similar to the pattern of the generic quasi-
crystal structure reported here.

In this Letter we use the recently developed stochastic
series expansion quantum Monte Carlo (SSE-QMC) al-
gorithm [9] to analyze the magnetic ground state proper-
ties of the nearest-neighbor AF spin-1=2 Heisenberg
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on a two-dimensional quasiperiodic tiling. This bipartite
structure, shown in Fig. 1, is called ‘‘octagonal tiling’’
due to its overall eightfold rotational symmetry. Sites
in this tiling have coordination numbers z ranging from
3 to 8. This generic lattice structure was chosen to ensure
that the magnetic ground state is unfrustrated due to the
bipartite property; i.e., nearest-neighbor sites belong to
two distinct subtilings [10]. In the numerical study, ap-
proximants with N � 41, 239, and 1393 sites [11] are
considered, and toroidal boundary conditions are applied
[12]. In the simulations the temperature is chosen as low
as T � 0:01J, in order to obtain ground state properties
on these finite systems.

An important property of quasicrystals, in the absence
of invariance under translations, is their self-similarity
under inflation transformations. These are site decimation
operations that increase the length scale but globally
preserve the quasiperiodic structure. An example of de-
flation is shown in Fig. 1(a) where original tiles and
deflated tiles are superimposed. Since periodic approxi-
mants are finite pieces of the octagonal tiling, they are not
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invariant under such a transformation, but instead trans-
form into smaller approximants. In this process, the sites
which remain after a deflation operation can change
their connectivity. A site of coordination number z will
be transformed into a site of new coordination number
z0 after deflation, with z0 � z. We are interested in how
this self-similarity is reflected in the inhomogeneous
magnetic ground state of the Heisenberg Hamiltonian.

In the SSE-QMC simulations the local value of the
staggered magnetization is determined at each lattice
site i. It is defined by

ms�i� �

����������������������������������������
3

N
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jhSziS
z
ji
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where the sum extends over all lattice sites j of the
approximant [13]. The inset of Fig. 2 shows a finite-size
extrapolation of the spatially averaged staggered magne-

tization, ms �
�������������������������������������������������
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z
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q
, where the sum

extends over all pairs of sites i and j. In the thermody-
namic limit, this observable approaches ms �
0:337� 0:002, indicating that the system has AF long-
range order. Note that the average moment is larger than
that of the square lattice, ms > msq

s � 0:3071� 0:0003
[14], even though the average connectivity for the octago-
nal tiling is exactly 
zz � 4, the same as for the square
lattice. This suggests that quantum fluctuations reducing
the order parameter are suppressed due to the inhomoge-
neous connectivity in the octagonal tiling.

The measured dependence of ms�i� on the local coor-
dination number z is plotted in the main part of Fig. 2 for
the N � 1393 approximant. A wide spread of these mo-
ments is observed, particularly for small values of z.
There is a tendency for sites with more neighbors to
have smaller staggered moments because their spin is
suppressed by forming a larger number of local bonds
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FIG. 2. Dependence of the staggered magnetization on the
coordination number z. Inset: finite-size extrapolation of the
average staggered magnetization of the octagonal tiling.
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[6]. However, there are exceptions to this rule, indicat-
ing the presence of longer-range correlations. A further
striking feature observed in Fig. 2 are splittings in the
distribution function for the staggered moments. This is
most evident at z � 5, but it also occurs on smaller scales
at other coordination numbers, e.g., at z � 8.

In general, the local staggered moment is influenced by
both global (spin-wave) and local fluctuations (cluster
formation with nearest neighbors) [6]. To sort out the roles
of the local versus the long-range correlations, we next
focus on the local approximation to the estimator for the
staggered moment,

ms;loc�i� �
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where the sum is truncated to the sites in the immediate
vicinity of i. This quantity is a local approximation of
ms�i� defined in Eq. (2), reflecting the average bond
strength �1=z�

Pz
j�1 Si � Sj of site i with its z neighbors.

Studying this quantity therefore allows us to differentiate
numerically between local and nonlocal effects on the
inhomogenous magnetic ground state.

Figure 3 shows a clear monotonic decay in ms;loc�i�
with an increasing number of neighbors z. This effect
can be understood by considering the local constituents of
the cluster, shown in Fig. 1(b), which we call Heisen-
berg stars (HS) [15]. These are described by the nearest-
neighbor Hamiltonian HHS�z� � J

Pz
j�1 S0 � Sj, where

the index 0 denotes the central spin of the cluster and
the AF exchange integral is set to J � 1. The ground state
energy of these stars can be calculated exactly, and is
given by EHS

0 �z� � 	�2
 z�=4. The estimator for the
local staggered magnetization can be obtained directly
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FIG. 3. Dependence of the local approximation of the stag-
gered magnetization on the coordination number z. The points
on the dashed line are exact values obtained for Heisenberg
stars. Inset: spatial variation of the local approximation to the
local staggered magnetization where the radii of the circles
correspond to the size of local approximation.
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FIG. 4. Hierarchy of the local staggered magnetization of the
z � 8 sites in the 1393 site tiling, grouped according to the
value of z0 under the deflation transformation. Numbers on
top of the symbols give the value of z00 for the z0 � 8 sites
under a further deflation transformation.
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from Eq. (3),

mHS
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implying a z	1=2-like decay, consistent with the trend of
the QMC data observed in Fig. 3. The ground state energy
as well as the magnetic moment of the isolated
Heisenberg clusters are naturally larger than the equiva-
lent quantities in the quasicrystal where the presence of
additional bonds lowers the energy per site and further
screens the local staggered magnetization.

For all coordination numbers, there is some degree of
spread in the distribution of ms;loc�z�. This phenomenon
can be understood by considering nonlocal corrections to
the magnetic moments of the isolated Heisenberg stars.
Next-nearest-neighbor corrections to the local moments
for the six types of sites (z � 3; . . . ; 8) can be obtained
in a self-consistent manner by rediagonalizing the
Heisenberg stars, using local spin operators that are re-
normalized according to their specific environments, i.e.,
by replacing hSzi i by mHS

s;loc�z� with the appropriate coor-
dination number to determine the renormalized matrix
elements. This procedure naturally leads to larger spreads
for sites with small z, since in the octagonal tiling they
have a wider variety of local environments than the sites
with large z, which is observed in Fig. 3.

Furthermore, one notices a prominent bimodal split-
ting effect at sites with z � 5. In the octagonal tiling,
these sites occur in pairs and have two distinct local
environments [16]. The first type of z � 5 clusters has
two z � 4 neighbors, two z � 3 neighbors, and one z � 5
neighbor. The other type has four z � 4 neighbors and one
z � 5 neighbor. Analogous to the discussion in the above
paragraph, the next-nearest-neighbor correction to the
staggered magnetic moment for the two types can be
determined by diagonalization of the corresponding
6� 6 matrices in the Sztot � �N 	 2�=2 subspace of these
two N � 6-site Heisenberg stars, using the staggered
magnetization values mHS

s;loc�z� of the Heisenberg stars in
Eq. (4) [17]. Following this procedure, one finds two
renormalized staggered moments with a splitting
�ms;loc�5� � 0:007, which is in very good agreement
with the numerically observed splitting for the z � 5 sites
in Fig. 3.

Let us now turn to the hierarchical structure of the
magnetic ground state that can be observed in the split-
tings of the staggered moments of the z � 8 sites. These
sites have eightfold symmetry out to their third neighbor
shell. Since their local environments are identical up to a
larger distance compared to other sites, the spread in
values of ms;loc�i� is relatively small (Fig. 3). One can,
however, divide these sites into four groups according to
their transformation under deflation, i.e., their new local
coordination numbers z0. The ms�i� values consequently
fall into four discrete groups (z0 � 5, 6, 7, and 8), as
177205-3
shown in Fig. 4. This hierarchical fine structure is analo-
gous to the discussion of the z � 5 sites, but occurs on a
smaller scale. Interestingly, the most symmetric group
with z0 � 8 experiences an additional hyperfine splitting
due to a fourfold subgrouping with z00 � 5, 6, 7, and 8
under further deflation. In the limit of infinite size, this
leads to a multifractal distribution of ms�i� for this class
of sites.

To summarize this discussion, the different local envi-
ronments in the quasiperiodic structures thus lead, first,
to a systematic decrease of ms;loc�i� with increasing z. The
differences in next-nearest-neighbor shells for a given z
gives rise to a spread of ms;loc�i� and to discrete distribu-
tions which are self-similar on smaller and smaller scales,
as seen in the eightfold site example. These generic fea-
tures should be observable by high-precision nuclear
magnetic resonance measurements. Comparing the data
in Figs. 2 and 3 one further observes that long-range
correlations tend to suppress the differences in ms;loc�i�
between the sites, leading to a nonmonotonous depen-
dence of ms�i� on z. The spread in values of m�i� is overall
smaller than for ms;loc�i�. However, the splittings at z � 5
and 8 persist in mS�i�, and should thus be experimentally
observable.

We conclude the discussion of the magnetic ground
state on the octagonal tiling by presenting the magnetic
structure factor, which is of relevance to inelastic neutron
scattering experiments. It is obtained by a Fourier trans-
formation of the real space correlation function of the
largest available approximant,

Szz�k� �
1

N

X
r;r0

eik��r	r0�hSzrS
z
r0i; (5)

using the QMC data for the octagonal tiling. In Fig. 5 the
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FIG. 5. (a),(b) Simple Bragg scattering, and (c),(d) anti-
ferromagnetic superstructure in the octagonal tiling, extracted
from quantum Monte Carlo data on the 1393 site approximant.
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diffraction pattern of this quasicrystal lattice is compared
with the antiferromagnetically induced superstruc-
ture. The eightfold pattern in Figs. 5(a) and 5(b) reflects
the eightfold symmetry of the quasicrystal about the
central Bragg peak at �kx; ky� � �0; 0�. The introduc-
tion of AF correlations gives rise to selection rules that
result in a shift of the reciprocal space indices [18]. The
nuclear Bragg peaks are extinguished by this shift, and a
different set of peaks is selected. This is clearly seen in
Figs. 5(c) and 5(d), which show no more central Bragg
peak, but sizable peaks at wave vectors Q  ���;��=2�
and ���=2;���, corresponding to an antiferromagnetic
modulation vector [7] q � �12 ;

1
2 ;

1
2 ;

1
2�a� in the octagonal

tiling. This AF superstructure is an extension to the two-
dimensional case of the AF 1D structure discussed
in [18].

In conclusion, we have examined the AF spin-1=2
Heisenberg model on the bipartite octagonal tiling, using
the stochastic series expansion quantum Monte Carlo
method. The main effects we observe are (i) an inhomo-
geneous distribution of staggered moments, (ii) a reduc-
tion of the local order parameter with an increasing
number of neighbors, (iii) strong long-range effects,
(iv) evidence for hierarchical nature of the magnetic
ground state, and (v) a magnetic superstructure in
the spin structure factor. These generic predictions
about magnetic quasicrystals should be testable by high-
resolution NMR and neutron scattering measurements. In
real quasicrystals the presence of magnetic frustration
and details in the distribution of the magnetic moments
can lead to a suppression of magnetic order. For example,
typically only a subset of the sites are magnetic. Fur-
thermore, in the strongly frustrated Zn-Mg-Ho system
short-range antiferromagnetic order was observed at fi-
nite temperature, whereas this study finds true long-range
order at zero temperature on the bipartite octagonal tiling.
These differences should not affect the positions of the
177205-4
diffraction peaks, but only their widths and relative
intensities.
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