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The theoretical study of spin diffusion in double-exchange magnets by means of dynamical mean-
field theory is presented. We demonstrate that the spin-diffusion coefficient becomes independent of the
Hund’s coupling JH in the range of parameters JHS � W � T, W being the bandwidth, relevant to
colossal magnetoresistive manganites in the metallic part of their phase diagram. Our study reveals a
close correspondence as well as some counterintuitive differences between the results on Bethe and
hypercubic lattices. Our results are in accord with neutron-scattering data and with previous theoretical
work for high temperatures.
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S�q; !� ’ 2�nB�!� � 1	Im	�q; !�, where 	�q� is the tems [13]. Regardless of modifications of the DE model
Spin diffusion dominates the low-!, low-k excita-
tion spectrum of a magnet in its paramagnetic state and
contains important information about the spin dynamics.
In the past, spin diffusion was studied intensively in
Heisenberg systems and, recently, has been investigated
both theoretically and experimentally for strongly corre-
lated itinerant magnets [1–3]. The current growth of
interest in spintronics requires understanding how local
spins relax through their interactions mediated
by itinerant charge carriers rather than through their
direct interactions with each other [4]. Among such sys-
tems are the colossal magnetoresistive (CMR) mangan-
ites which are ferromagnetic metals in a large part of
their phase diagram [5]. Recent systematic neutron-
scattering experiments on the ferromagnetic CMR mate-
rials revealed a peak centered at ! � 0 associated with
the spin diffusion. This peak was also seen below the
ordering temperature indicating electronic inhomogene-
ity with regions having lower Tc’s.

In this Letter we present a comprehensive, self-
consistent, microscopic calculation of spin diffusion ap-
plying dynamical mean-field theory (DMFT) to the
double-exchange (DE) model. We demonstrate that the
spin-diffusion coefficient Ds is related to the local single-
particle Green’s function and can be evaluated as a
function of doping and temperature. Our results agree
quantitatively with neutron-scattering data on mangan-
ites for a range of doping concentrations. Thus, our ap-
proach creates a framework for the self-consistent study
of diffusive spin dynamics in many real materials, in-
cluding magnetically doped semiconductors.

Following the general hydrodynamic arguments of
Ref. [6], we write the generalized susceptibility of a para-
magnet for low energies and long wavelengths as

	�q; !� ’ 	�q�
Dsq2

�i!�Dsq
2 ; (1)

which through the fluctuation-dissipation theorem gives
the neutron-scattering dynamical structure factor
0031-9007=03=90(17)=177202(4)$20.00 
static susceptibility at wave vector q and nB�!� �
�e!=T � 1	�1. We take �h � kB � 1 throughout this paper.
Further, the generalized susceptibility can be related to
the spin current-current correlation function using the
dispersion relations [7] and the continuity equation
@S��r; t�=@t � �ri j

�
i �r; t�:

	�q; !� � �
q2a2

!2 ���q; !� ���q; 0�	; (2)

where ���
ij �q; !� � �i

R
dtei!t��t�h�j�yi �q; t�; j�j �q; 0�	i

is the retarded current-current correlation function [8],
j�i �q; t� is the ith component of the spin current for the
�-spin projection, i � 1 . . . d, d is the dimensionality, and
a is the lattice constant. We use the isotropy of the spins
above Tc and assume the isotropy of real space to suppress
the indices in ���

ij �q; !� � ��q; !�����ij. Combining
Eqs. (1) and (2) in the q; ! ! 0 limit, we write the
Einstein relation between the spin-diffusion coefficient
and the spin conductivity �s (which in general is distinct
from the particle conductivity) as

D s	 � �s � �a2 lim
!!0

Im���0; !�	

!
; (3)

where 	 � 	�q � 0�. These expressions are general and
do not depend on the microscopic model.

We now consider the DE model with Hamiltonian

H � �t
X
hiji�

�cyi�cj� � H:c:� � 2JH
X
i

Si � si; (4)

where t is the nearest-neighbor kinetic energy, JH is the
Hund’s coupling between the local Mn3� S � 3=2 spin
and the electronic spin s � cy��̂���c�=2, and �̂� are the
Pauli matrices. To describe the multitude of phases in
manganites requires that the orbital, phonon, or Jahn-
Teller terms be included in the above model [9]. However,
the magnetic properties of these materials in the metallic
part of their phase diagram, such as the magnetic exci-
tation spectrum and the ferromagnetic transition tem-
perature [10–12], are quantitatively well described by
the model in Eq. (4). Therefore, such a model must be
also capable of describing spin diffusion in these sys-
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FIG. 1. Interacting DOS N�!� for several values of JHS for
the Bethe (solid lines) and hypercubic (dashed lines) lattices.
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needed to describe a particular real system, elucidating
the dynamic properties of this basic model of strongly
correlated itinerant magnets is an important task on
its own.

Within the DE model there is no direct interaction
between the local spins. Thus, the total on-site spin Stot

l �
Sl � sl commutes with the exchange part of Eq. (4) and
the spin current can be expressed in terms of electronic
operators only [14]: j�i �q� �

P
kv

i
kc

y
k;��̂�

�
��ck�q;�=2,

where vik � ri"k and "k � �2t
P

d
i�1 coskia. This is

simply another way of saying that electrons mediate the
magnetic relaxation processes in an itinerant system.

The physical situation relevant to manganites corre-
sponds to strong Hund’s coupling JHS � W. Since the
characteristic relaxation time for the electronic spin is
short and the spin relaxation is essentially local, pertur-
bative approaches to the spin diffusion [15] are inappli-
cable. Therefore, we employ DMFT, which takes into
account the local dynamics in strongly correlated systems
and has been successfully applied to a number of prob-
lems [16,17]. Using DMFT also simplifies our problem
significantly because the higher-order diagrams in the
current-current correlation function of Eq. (3), often re-
ferred to as vertex corrections, are identically zero within
this approach [16].

Thus, to evaluate the spin-diffusion coefficient we
apply the standard Matsubara formalism to Eq. (3) using
the above definition of the spin current:

Ds	

a2
�

!
2

X
k

�vik�
2
Z 1

�1
d"Ak�"�

2

�
�
@n�x�
@x

�������x�"

�
; (5)

where k and " are the internal momentum and fre-
quency of the ‘‘bubble’’ diagram, respectively. Here
vik � 2t sinkia, Ak�"� � ��1=!�ImGk�"� is the elec-
tronic spectral function, n�"� � �e�"�&�=T � 1	�1 is the
Fermi-function, and & is the chemical potential.

The DMFT imposes a special form of the Green’s
function in which the self-energy is k independent and
is defined from a self-consistency condition specified
below. Within the DMFT parameters of the model are
rescaled such that �tt � t

���
z

p
is finite as the dimensionality

d ! 1, where z � 2d is the number of nearest neighbors
[16]. In the following

���
2

p
�tt is set to unity. Generally, the

d � 1 limit is well defined for Bethe and hypercubic
lattice geometries. While the semicircular electronic den-
sity of states (DOS) of the Bethe lattice is convenient for
calculations, the Bethe lattice itself lacks the translational
invariance and inversion symmetry implicitly used to
obtain Eq. (5). Thus, it is important to determine whether
the results on the Bethe lattice are equivalent to the results
on the hypercubic lattice, which is free from such defi-
ciencies. Since many problems have been studied using
the Bethe lattice [16], this comparison will have an even
broader significance for the DMFT in general.

We briefly sketch here the DMFT equations for the DE
model [10,18]. Since the self-energy is local, one can
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change Gk�E� ) G"�E� � �E� "� ��E�	�1, and
P

k )R
d")0�"�, where " � "k, and )B

0 �"� �
��������������
2� "2

p
=! and

)H
0 �"� � exp��"2�=

����
!

p
are the bare DOS’s for Bethe and

hypercubic lattices, respectively. The properties of the
system are obtained from the local Green’s function:

g�E� �
Z
d"

)0�"�
E� "���E�

; (6)

where the self-energy is defined from ��E� � g�1
0 �E� �

g�1�E�, reminiscent of the Dyson equation, where g�1
0 �E�

is the ‘‘Weiss’’ function containing the dynamic influence
of the environment on a given local site. The solution of
the single-site problem provides a relation between g0�E�
and ��E� [10,16]. In the paramagnetic state and in the
quasiclassical limit S � 1, such a relation is particularly
simple [10]: ��E� � �JHS�

2g0�E�, which yields

g�E� �
��E�

�JHS�
2 � ��E�2

: (7)

Together with Eq. (6), this gives a self-consistent con-
dition for ��E� or g�E�.

We now compare the Bethe and hypercubic solution for
the single-particle properties. Figure 1 shows the evolu-
tion of the interacting DOS N�!� � ��1=!�Img�!� for
several values of JHS. The band splits as JH increases and
both lattice geometries exhibit the same qualitative be-
havior. Since the hypercubic DOS is expected to have
ingap states, one may ask whether the metal-insulator
transition is well defined for a half-filled band. We find
that the band splitting in the Bethe and hypercubic latti-
ces happens at the same critical value �JHS�c � 1=

���
2

p
. At

the transition, the imaginary part of the self-energy at
! � 0 vanishes and the real part diverges. As a result,
N�! � 0� is exactly zero for JH > JcH and the metal-
insulator transition for the half-filled band in the hyper-
cubic geometry is well defined [19]. At small energies,
N�!� / e��JHS�4=!2

vanishes quite abruptly [20]. In con-
trast, the ‘‘outer’’ tails of the upper and lower bands
177202-2
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FIG. 2. Ds	z=a
2 versus n for several JHS for the Bethe (solid

lines) and hypercubic (dashed lines) lattices.
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behave very similar to the ‘‘bare’’ Gaussian form. Note
that for JHS * 1, the form of N�!� for each subband is
rather insensitive to the further increase of JH.

We now rewrite Eq. (5) for the spin-diffusion coeffi-
cient within the DMFT:

Ds	

a2
�

1

2z

Z 1

�1
d"

�
�
@n�x�
@x

�������x�"

�	
1

b
�

@
@b



ÂA�"�; (8)

where b � �Im��"� and ÂA�"� �
R
d")̂)�

0 �"�A"�"� with
)̂)�

0 �"� being the ‘‘current’’ DOS defined from the trans-
formation

P
ksin

2kia )
R
d")̂)0�"� [21]. For the hyper-

cubic lattice )̂)H
0 �"� � )H

0 �"�=2 while for the Bethe
lattice )̂)B

0 �"� � �2� "2�)B
0 �"�=3. To obtain Eq. (8) we

used the relation A"�"�
2 � �1=b� @=@b	A"�"�=2!.

Since the spin conductivity is proportional to the corre-
lation function of two spin currents, each scaling as t�
1=

���
z

p
, the prefactor in Eq. (8) contains 1=z. This means

that dDs	 is finite as d ! 1, similar to the particle
conductivity [22].

In the manganites, the Curie temperature Tc is much
smaller than either the Hund’s coupling or the bandwidth,
in agreement with DMFT and Monte Carlo calculations
for the DE model [10,23]. Therefore, all realistic tem-
peratures are much smaller than the bandwidth T � W
and the derivative of the Fermi-function in the integrand
of Eq. (8) should be replaced by a � function at the
chemical potential. Then, combining Eq. (8) with the
specific form of the DOS’s for the Bethe and hypercubic
lattices, one arrives at

Ds	z

a2
�

8>>><
>>>:

1
6!

	
2� g00

b �2� 2b2 � f2� � fg0


B

"�&
;

1
4!

	
2� g00

b �1� 2b2� � 2fg0


H

"�&
;

(9)

where g0 � Reg�"�, g00 � Img�"�, and f � "� Re��"�.
Thus, the spin-diffusion coefficient is expressed through
the local electronic Green’s function and self-energy
only. Figure 2 presents Ds	 as a function of the elec-
tronic concentration n for several JHS. As n varies from
0 to 1, the chemical potential sweeps from ! � �1 to
! � 0 in Fig. 1. The results are very similar in both
geometries and become independent of JHS as JHS !
1 with the maximum located at n � 0:5. In the limit
JHS � 1, Eq. (9) yields a numerical value for this maxi-
mum in Ds	z=a2: 5=6! �� 0:265� and 0:292 for the
Bethe and hypercubic case, respectively. This demon-
strates a close quantitative correspondence between the
results in the Bethe and hypercubic lattices, which justi-
fies the use of the former despite the concerns outlined
earlier. An interesting feature appears in the results
for the hypercubic lattice as n ! 0. Instead of vanishing,
the spin-diffusion coefficient tends to a finite limit
Ds	z=a2 � 1=4!�JHS�2, shown by circles in Fig. 2 [24].

In the high-temperature limit T � JHS � 1 Eq. (8)
yields the result Ds	� 1=T obtained previously using a
177202-3
Tchebycheff bounds (TB) formalism [25]. Numerically,
�DDMFT

s =DTB
s �Bethe � 40

���
2

p
=9!3=2 � 1:13 agree very

closely as well.
It is interesting to analyze our results in the context

of CMR materials. The superexchange (SE) interaction
is often discussed [5] as necessary to correct the DE
model. Within DMFT, the SE coupling JSE must scale
as 1=z. Combining this with the result of Ref. [1] one
finds that DSE

s / 1=z3=2 is suppressed in comparison with
the DE result Ds / 1=z. This also serves as a demonstra-
tion that the DE model cannot be simply reduced to an
effective Heisenberg model. In a real d � 3 material the
role of SE is further reduced by the smallness of JSEij �
t2=JHS in comparison with the kinetic energy �xt.
Therefore, the DE must dominate the spin diffusion and
one can expect our results to be valid not only for the
metallic part of the CMR phase diagram (x � 0:22 . . . 0:5
for La1�xCaxO3, n � 1� x in Fig. 2) but also for the
ferromagnetic insulating phase (x � 0:22) [26]. Of
course, in the limit x ! 0 DE will diminish and the SE
will dominate. Also, the critical scaling in the mixed
phase 0< x< 0:12 (with a mixture of antiferromagnetic
and ferromagnetic orders) can be strongly modified [27].
These cases require separate consideration. At x � 0:5
charge ordering prevents the DE mechanism from being
operative.

A systematic neutron-scattering study of the metallic
manganites recently focused on spin diffusion [3]. The
width of the observed peak in S�q; !� centered at ! � 0
scales as #q2, where # � 2Ds. Experimental results
taken at Texp�x� ’ 1:1Tc�x�, where Tc�x� is the Curie
temperature for a given hole concentration x, give # �
15–30 meV %A2. To compare our results to experiments
we use z � 6 and a � 3:87 %A. But keep in mind that
spin diffusion persists below the transition point and
that, at least for the experimentally accessible wave vec-
tors, the correlation length saturates at about 20 %A. This
implies that local magnetic correlations are suppressed
by electronic inhomogeneities, which are probably
177202-3



FIG. 3. Ds	=a2 as a function of x. Experimental values of
Ds are from Fig. 5 of Ref. [3], 	exp is described in the text,
theoretical results are from Eq. (9) for JHS � 1.
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associated with the local charge ordering [3]. So for
simplicity we take the susceptibility in the Curie form
	exp � S0�S0 � 1�=3T�, where S0�x� � S� �1� x�=2 is an
average on-site spin and T� � Texp�x� is known from
Ref. [3]. Figure 3 shows the theoretical data for Ds	=a

2

for JHS � 1 from Eq. (9) as a function of x together with
experimental Dexp

s 	exp=a2. We note here, that the theo-
retical curves in Fig. 3 are virtually independent of the
actual value of JHS for JHS * 1. This figure demonstrates
a remarkable agreement between the experimental and
theoretical results, which contains no fitting parameters.
Further improvement of the agreement can be sought, for
example, from taking into account the second eg band
which would effectively reduce JH=W [13].

Since various other experiments also indicate the pres-
ence of local inhomogeneities in CMR systems [28], we
propose the following analysis. As q decreases, long-
range magnetic correlations must dominate 	�q� and the
magnetic correlation length must eventually exceed the
size of the local polaronic distortions. So at a fixed
temperature close to Tc, 	exp�q� will increase and there
will be a systematic decrease in the observed value of
Dexp

s � 1=	. This set of measurements would provide
further information about magnetic correlations within
the inhomogeneities in CMR systems.

In conclusion, we have presented a self-consistent
study of the spin diffusion in the double-exchange mag-
nets within the framework of DMFT. This nonperturba-
tive approach allows us to calculate the spin-diffusion
coefficient at any temperature down to a transition point.
A good agreement with the experiments in the ferromag-
netic CMR manganites and earlier work is found.
Altogether, this provides a new insight into the dynamics
of strongly correlated itinerant magnets.
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[4] M. E. Flatté and J. M. Byers, Phys. Rev. Lett. 84, 4220

(2000).
[5] E. Dagotto et al., Phys. Rep. 344, 1 (2001); Physics of

Manganites, edited by T. A. Kaplan and S. D. Mahanti
(Kluwer Academic and Plenum, New York, 1998).

[6] D. Forster, Hydrodynamic Fluctuations, Broken Symme-
try, and Correlation Functions (Benjamin, Reading,
1975); B. I. Halperin and P. C. Hohenberg, Phys. Rev.
177, 952 (1969).

[7] S.V. Maleev, Zh. Eksp. Teor. Fiz. 65, 1237 (1973) [Sov.
Phys. JETP 38, 613 (1974)]; Yu. A. Izyumov and Yu. N.
Skryabin, in Statistical Mechanics of Magnetically
Ordered Systems (Plenum, New York, 1988).

[8] G. D. Mahan, Many-Particle Physics (Kluwer Academic
and Plenum, New York, 2000), 3rd ed.

[9] A. J. Millis et al., Phys. Rev. Lett. 77, 175 (1996).
[10] N. Furukawa, J. Phys. Soc. Jpn. 64, 2754 (1995); 65, 1174

(1996).
[11] D. I. Golosov, Phys. Rev. Lett. 84, 3974 (2000).
[12] J. Zang et al., J. Phys. Condens. Matter 9, L157 (1997).
[13] A more realistic model with two eg bands becomes

effectively equivalent to our single-band DE model
Eq. (4) if the Jahn-Teller splitting or Hubbard repulsion
are included. Thus, the two bands with splitting should
only change our results quantitatively. Our theory can be
extended to the Jahn-Teller case, but it transforms to a
different problem for the case of the Hubbard interaction.

[14] R. S. Fishman, Phys. Rev. B 62, R3600 (2000).
[15] L.-J. Zou et al., J. Appl. Phys. 87, 5499 (2000).
[16] A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).
[17] If the nano-inhomogeneities are truly important for

CMR [5] the DMFT will eventually fail to reproduce
the percolative processes for transport in the CMR
regime.

[18] M. Auslender and E. Kogan, cond-mat/0102469.
[19] Also see A. O. Anokhin et al., J. Phys. Condens. Matter 3,

1475 (1991).
[20] Similar behavior has been found in the Hubbard model:

A. Georges and W. Krauth, Phys. Rev. B 48, 7167 (1993).
[21] A. Chattopadhyay et al., Phys. Rev. B 61, 10 738 (2000).
[22] W. Metzner et al., Phys. Rev. B 45, 2237 (1992).
[23] Y. Motome and N. Furukawa, J. Phys. Soc. Jpn. 69, 3785

(2000).
[24] In our problem, diffusion originates from correlations

and the states in the remote tails (j&j � JHS) are weakly
correlated with diverging relaxation time: 4 / e&

2
. The

smallness of the DOS cancels this divergence giving a
finite value of Ds	 / 4N�&� as n ! 0. In this limit the
dynamical spin-diffusion coefficient [25] D�!�	 �
�s�!� / 1=�!242 � 4� has negligible width and weight
given by 1=4.

[25] R. S. Fishman, J. Phys. Condens. Matter 12, L575 (2000);
14, 1337 (2002).

[26] In fact, the experimental data on Ds are very similar for
the insulating and metallic compounds [3].

[27] K. A. Kikoin and M. N. Kiselev, Zh. Eksp. Teor. Fiz. 112,
1816 (1997) [Sov. Phys. JETP 85, 994 (1997)].

[28] C. P. Adams et al., Phys. Rev. Lett. 85, 3954 (2000).
177202-4


