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Low-Frequency Behavior of Beads Constrained on a Lattice
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We study sound propagation in a triangular lattice of spherical beads under isotropic stress.
Polydispersity of real beads breaks some contacts, creating a disordered lattice of contacting beads.
At large stress, the sound velocity behaves according to Hertz contact law and departs from it at lower
stress. This evolution is reversible, with the same crossover when increasing or decreasing the stress, for
a given piling. Correlations are much more sensitive to disorder. When calculated with signals
propagated in the same lattice, they evolve reversibly with the stress, being much higher at large stress
when the contact lattice is more regular. This leads to an interpretation of the non-Hertzian behavior in
terms of progressive activation of contacts, in discrepancy with previous models involving buckling of
force chains.
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the lattice and the framework [10]. Three sides of the FIG. 1. Sketch of the experimental setup.
A prominent feature of granular media is the hetero-
geneity of the spatial distribution of forces in the piling,
observed both in simulations [1,2] and experiments [3]. A
lattice of contacting grains supports the stresses and
allows acoustic wave propagation. Even for the simplest
model of granular media, that is, nominally monodis-
perse spherical beads whose centers are placed on a regu-
lar lattice, the geometry of the contact lattice may be
extremely complicated. Indeed, since spherical grains
have only point contacts, any imperfections of the
beads imply that some contacts are broken, creating
randomness.

This effect has been set forth to explain the paradoxi-
cal propagation of sound in a face-centered cubic lattice
of steel beads [4,5]: Hertz contact law [6] predicts that the
sound velocity should scale as the power 1=6 of the force
applied to the piling, whereas a 1=4 exponent is observed.
Some authors [5,7,8] suggested that actual beads can-
not be considered as perfect elastic spheres. They
proposed modifications of Hertz law that led to 1=4
exponent. Another approach [1,5,9] attributes to random-
ness of the contact lattice the discrepancy with Hertz law
predictions.

In a previous work [10], we tested the validity of the
first approach on a chain of identical beads, in which all
the grains are in contact with their neighbors. Our mea-
surements show Hertzian behavior, which rules out this
approach. In this Letter, we report on experiments done
with a 2D system, which is adequate to study the con-
sequences of the randomness of the contact lattice.

The experimental setup is sketched in Fig. 1. The bead
centers are placed on a regular triangular lattice, con-
tained in a hexagonal cell. The lattice is horizontal, held
between two plates of polytetrafluoroethylene, in order to
get low friction and poor impedance matching between
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hexagon are fixed, while the other ones may move inde-
pendently along their normal direction. The force they
exert on the lattice is measured by a static force sensor.
With the help of a feedback loop, we may apply a stress at
any prescribed value. In the following, the stress is ap-
plied isotropically.

We use either stainless steel beads of diameter d �
8 mm� 4 �m or nylon beads (d � 8 mm� 50 �m).
An important feature of our experiment is that both the
acoustic transmitter and the sensor are in contact with
only one bead. This configuration is particularly sensible
to disorder [11].

A carefully designed acoustic transmitter [10,12] al-
lows us to send a burst wave of well defined frequency
6.5 kHz, with a Gaussian envelope. As shown by Fig. 2,
curves (a) and (b), the acoustic signal closely follows the
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FIG. 2. Structure of the signal. Curves: (a) electrical excita-
tion; (b) acoustical response; (c) signals propagated in two
different steel bead lattices. The box delimits the coherent
signal. Curve (d) shows the signal propagated in nylon beads.
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FIG. 3. Left ordinate: plot, in log-log scale, of the velocity
versus the applied force, in steel beads, during compression (�)
and decompression (�) of the same lattice. Right ordinate:
plot, in log-linear scale, of the correlation C	F�
0� [cf.
Equation (3)] (same symbols, joined by a solid line).
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FIG. 4. Plot, in log-log scale, of the velocity versus the force,
in nylon beads, during compression (�) and decompression (�)
of the same lattice.
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electrical excitation. We measure the time of flight (TOF)
of the wave. As we shall see, the arrival of the signal
corresponds to the propagation of a coherent wave in an
effective medium, so that we can estimate a velocity from
the distance between transmitter and sensor. The TOF
varies between 500 and 1000 �s, depending on the ap-
plied force (see Fig. 3) in steel beads, and between 900
and 1400 �s (see Fig. 4) in nylon beads. Thus the typical
wavelength ranges from 8 to 16 (respectively, 6 to 9) bead
diameters d, for steel (respectively, nylon). The lattice side
L is 31 beads, so that the wavelength is intermediate
between the two natural length scales L and d of the
system, which is consistent with the notion of an effective
medium.

Each experimental run proceeds in the same way: first,
we arrange the beads with their centers on a triangular
lattice, thus getting a peculiar (but unknown) initial
distribution of bead diameters in the lattice. Then we
increase the static force applied on the lattice, without
making any measurement: since the lattice holds the
stress, the contact network is established. It evolves pro-
gressively with the applied force through mechanisms we
will detail further. At the end of this first compression, we
get a peculiar realization of the contact lattice. Then,
we proceed to the measurements by slowly decreasing
the force, each decrement being roughly 10% in magni-
tude. Having reached the minimal force (below which we
are no more able to collect the acoustical signal), we may
increase it subsequently in the same way.

From Fig. 2, curve (c), it is clear that the acoustical
signal is strongly distorted after propagation in steel
beads. The tail of the signal is partly due to reflections
of the waves on the boundaries and partly to multiple
scattering by the disordered contact lattice. Wave ampli-
tude is small enough to keep the lattice undisturbed, so
that it does not affect the shape of the signal which is
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perfectly reproducible under constant stress. This is not so
when we consider two such measurements for two differ-
ent initial random mixing of the beads: In that case, the
two contact lattices are not the same. As shown in Fig. 2,
curve (c), the first oscillations are reproducible, but the
tails are completely different, which is an evidence that
the wave propagation depends on the details of the contact
lattice. We identify those first, reproducible, oscillations
as the coherent signal [11] and the tail as the incoherent
signal [13].

For the coherent part of the wave, which propagates in
an effective medium, we may define a velocity as the ratio
of emittor-sensor distance and the TOF. Its evolution with
the static force applied to the piling is shown in Fig. 3.
Assuming perfect ordering of the contact lattice, Hertz
law predicts a power 1=6 scaling with the force [4].
174302-2
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At moderate force we observe a non-Hertzian exponent
[14], followed by a Hertzian one at larger force. What is
remarkable is that we observe the same exponent as in 3D
systems, roughly 1=4 [4,11]. This exponent is thus almost
insensitive to the piling dimensionality. The two regimes
are always observed with steel beads. The high stress
Hertzian regime is very reproducible, with a scaling for
the velocity cs � �255� 5�F1=6

stat m=s (with Fstat in N).
The prefactor is in very good agreement with the ex-
pected value of 261 m=s=N�1=6 for a triangular lattice
[16]. This is an evidence that, at high stress, the contact
lattice becomes more and more homogeneous. In contrast,
the crossover between the two regimes strongly depends
on the initial lattice and is measured between 190 and
325 N. The amplitude of velocity fluctuations in the non-
Hertzian regime, at a given force for different initial
lattices, is about 20%, which is rather small. It illustrates
the self-averaging aspect of effective properties such as
sound velocity. As we see below, properties of the inco-
herent part of the signal such as time correlations may
fluctuate much more strongly.

The non-Hertzian regime reflects the evolution of the
contacting grain lattice under compression. Two mecha-
nisms have been put forward to explain this evolution,
either successive buckling instabilities of force chains [5]
or progressive activation of contacts by elastic deforma-
tion of the beads [1]. Buckling occurs only under increas-
ing stress and implies a highly irreversible behavior of
the lattice. On the contrary, contact activation is revers-
ible since it relies on the elasticity of the beads. As shown
in Fig. 3, the velocity takes the same values during
compression or decompression, and most importantly
the crossover between Hertzian and non-Hertzian re-
gimes is the same, for a given initial realization of the
lattice. This reversible behavior is an evidence that the
lattice evolves via activation/deactivation of contacts.
Under increasing force contacts are progressively acti-
vated, leading to a ramification of the contact lattice,
and the effective stiffness of this structure increases
more quickly than that of individual contacts. The sound
velocity exponent is thus greater than expected from
Hertz law. At very large force, almost all grains are in
contact and we recover a quasiregular contact lattice and
its Hertzian signature.

As evidenced by Fig. 4, the behavior of nylon bead
lattice is somewhat different. We observe a new, low force
Hertzian behavior. For a given lattice, the evolution of
sound velocity is still reversible: velocity values and
crossover positions are the same under compression and
decompression, even in the new low force regime.

From the Hertz solution [6], one can roughly estimate
the ratios of the distances of approach 
 for steel and
nylon beads,


nylon


steel

�

�
Esteel

Enylon

Fnylon

Fsteel

�
2=3

� 4; (1)
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where Fsteel (respectively, Fnylon) is the midscale force
taken from Fig. 3 (respectively, Fig. 4), and E is the
Young’s modulus (E � 2:26� 1011 N=m2 for steel and
E � 3:55� 109 N=m2 for nylon). Thus the increase of
the distance of approach for nylon beads is insufficient
to compensate the factor 10 in radius dispersion. Hence
the initial tenuous structure which holds the stress under
very low compression is much more stable in nylon than
in steel beads. Under increasing stress, it first evolves
elastically, without much new contacts, causing this low
force Hertzian regime. Then, more contacts are activated
and we recover the non-Hertzian regime already ob-
served with steel beads.

As with steel beads, the high stress Hertzian regime is
very reproducible, with an experimental prefactor 227�
5 m=s=N�1=6 in very good agreement with the calculated
one 233 m=s=N�1=6. The crossover positions strongly
depend on the initial lattice, ranging, respectively, from
15 to 25 N and from 50 to 60 N.

A low force Hertzian behavior has been predicted by
Roux [1] in simulations of our experimental system. He
observed it for 2P

�3=2Ed
< 10�3, where P is the 2D pressure

and � is the relative dispersion in diameter. This gives an
estimate of, respectively, 7 N (for steel) and 2 N (for
nylon) as the crossover between low force Hertzian and
non-Hertzian behaviors. Our measurements are in quali-
tative agreement with this prediction, since we go down to
much lower forces with nylon beads than with steel beads.
But the corresponding crossover observed with nylon
bead lattice is 20 N. A possible explanation of this dis-
crepancy is friction between grains, not taken into ac-
count in the simulations.

Recently, a new theoretical approach [15] has been
used to calculate the effective speed of sound in the
same system. This mean field calculation, valid in the
high force limit where force fluctuations are not too
strong, takes into account the evolution of the number
of effective contacts with the pressure exerted on the
lattice. The sound velocity as a function of the pressure
agrees very well with our data and the simulations of
Roux [1], at moderate or high pressure. As emphasized in
[14], this analytical solution cannot be simply writen as a
power law.

To compare signal shapes, particularly sensitive to
disorder, we use cross correlations. If each signal consists
in N samples si�tn� taken at times tn, it reads

C 1;2 	

PN
n�1 s1�tn�s2�tn�������������������������PN

n�1 s
2
1�tn�

q ������������������������PN
n�1 s

2
2�tn�

q : (2)

We restrict this calculation either to the coherent signal,
denoting Ccoh, or to the acoustic speckle, denoting Cincoh.
The correlations are calculated at the same static force,
either for the same lattice under compression and decom-
pression (C’) or for two lattices with different initial
preparation (C�).
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FIG. 5. Correlations versus the force, in a steel beads lattice,
for compression/decompression of the same lattice C’ (�), and
for two different contact lattices, C� (�). [See Eq. (2)].
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The results are summarized in Fig. 5. The correlations
C’

coh and C�
coh are always greater than 0.8. This is con-

sistent with the concept of coherent signal, whose proper-
ties depend only on the effective propagation medium,
not on the details of the contact lattice. In contrast, the
correlations C’

incoh and C�
incoh are smaller, and we always

have C�
incoh < C’

incoh. For lattices with different initial
statistical distributions of beads, C�

incoh is small. It is
remarkable that this effect persists far away in the
Hertzian regime, showing that correlations are a much
more sensitive probe than velocity measurements and that
some disorder remains even with high applied forces. On
the contrary, waves propagating during compression and
decompression of the same lattice are highly correlated. It
is another evidence of reversibility and that buckling of
force chains is not the relevant phenomenon for the
evolution of the contact lattice.

In our confined setup, the tail of the signal originates
both from multiple scattering in a disordered medium and
from multiple reflections on the boundaries. Since reflec-
tion holds on fixed boundaries and involves mostly the
coherent signal, it should not depend much on the details
of the lattice. On the contrary, the weak values of C�

incoh
(see Fig. 5) show that the incoherent signal highly de-
pends on lattice configuration. That means that multiple
scattering is predominantly responsible for its structure
and justifies a posteriori to call it incoherent.

To describe the contact lattice evolution with the force,
we calculate the correlation for two successive forces F
and F�	F, during a monotonic evolution of the stress,

C	F�
0� 	

PN
n�1 sF�tn�sF�	F�tn � 
0��������������������������PN
n�1 s

2
F�tn�

q ���������������������������������PN
n�1 s

2
F�	F�tn�

q : (3)
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Here 
0 is the delay caused by the sound velocity variation
due to the force increment 	F. As shown by Fig. 3, the
correlation is much higher in the high force Hertzian
regime, which supports our previous interpretation: at
large force, almost all contacts are active, the lattice
evolves very little under a force increment, and the cor-
relation should be high. On the contrary, it is small in the
non-Hertzian regime where the lattice evolves a lot by
progressive activation of contacts. The reproducibility of
the correlation under compression and decompression in-
dicates that the contact lattice evolves reversibly.

We have shown that a regular lattice of nominally
identical beads actually behaves as a disordered system.
The sound velocity dependency on the stress is steeper
than what may be expected from Hertzian behavior of a
perfect lattice [4]. This is due to structural modification of
the contact lattice, via progressive activation of contacts.
The reversibility of this process is evidenced by the lack
of hysteresis in both velocity and correlation measure-
ments during compression/decompression of the system.
This is presumably true for more general granular media.
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