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Determination of Limit Cycles for Strongly Nonlinear Oscillators
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An innovative approach to finding limit cycles is proposed and illustrated on the van der Pol equation.
The technique developed in this Letter is similar to the Ritz’s method in variational theory. The present
theory can be applied to not only weakly nonlinear equations, but also strongly nonlinear ones, and the
obtained results are valid for the whole solution domain.
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Here the integral is all along the limit cycle. Under some
symmetry condition, Eq. (5A) can be written in the form

For comparison, we write the perturbation solution and
the exact solution. The perturbation solution is [11]
In this study, we will consider the following nonlinear
oscillation:

�xx� x� "f�x; _xx� � 0; (1)

where the parameter " needs not be small. Recently some
new perturbation methods and nonperturbative methods
are proposed, see, e.g., the nonperturbative method [1],
the � method [2,3], the homotopy perturbation method
[4,5], the variational iteration methods [6], and the
perturbation-incremental method [7,8]. A review of the
recently developed analytical methods is given by myself
in 2000 [9]. There also exists a wide body of literature
dealing with the problem of approximate determination
of limit cycles for strongly nonlinear oscillators by using
various different methodologies.

In this Letter, we will propose a new technique by the
variational theory (energy theory), which is quite differ-
ent from the above-mentioned methods.

Generally speaking, limit cycles can be determined
approximately in the form [8]

x � b� a�t� cos!t�
Xm
n�1

�Cn cosn!t�Dn sinn!t�; (2)

where b, Cn, and Dn are constant.
Substituting (2) into (1) results in the following

residual:

R�t� � �xx� x� "f�x; _xx�: (3)

In general, the residual might not be vanishingly small at
all points; the error depends upon the infinite ‘‘work,’’
dw, done by the ‘‘force’’ R in the infinite distance dx:

dw � Rdx: (4)

We hope that the total work done in a period is zero,
which requires

I
Rdx � 0: (5A)
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Z A1

A0

Rdx � 0; (5B)

where A0 and A1 are the minimum and maximum ampli-
tudes, respectively.

The above equation (5B) can be equivalently written in
the form

Z T

0
R _xxdt � 0; (6)

where T is the period. This technique is similar to the
method of weighted residuals [10].

In order to best illustrate the theory, we consider the
Duffing equation as an illustrative example:

�xx� x� "x3 � 0: (7)

Supposing that x � a cos!t� b, where a and b are con-
stants, we get the following residual:

R � a�1�!2� cos!t� b� "�a cos!t� b�3: (8)

The constant b can be identified from the relation b�
"b3 � 0, i.e., b � 0. So the residual can be written in
the form

R � �1�!2�x� "x3: (9)

We set Z a

0
Rdx �

Z a

0
��1�!2�x� "x3�dx

�
1

2
�1�!2�a2 �

1

4
"a4 � 0; (10)

which leads to the result

! �

��������������������
1�

1

2
"a2

r
: (11)

We, therefore, obtain the following approximate period:

T �
2������������������������

1� 0:5"a2
p : (12)
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Tpert � 2��1� 3
8"a

2�; " 	 1; (13)

while the exact one reads [11]

Tex �
4�����������������

1� "a2
p

Z �=2

0

dx����������������������
1� ksin2x

p ;

k �
"a2

2�1� "a2�
: (14)

For small ", the accuracy of our computed solution is
lower than that obtained by the perturbation theory.
However, our result is obtained from an energy point of
view; therefore, it is valid for the whole solution domain,
i.e., 0< "<1. In case " ! 1, we have

lim
"!1

Tex

T
�

2
�������
0:5

p

�

Z �=2

0

dx��������������������������
1� 0:5sin2x

p

�
2

�������
0:5

p

�
� 1:685 75 � 1:19: (15)

The 16% accuracy, when " ! 1, is remarkably good in
view of the simplest trial function, x � a cos!t. The
accuracy can be dramatically improved if we choose
the trial function as x � a cos!t� b cos3!t.

Now consider an oscillator with damping term,

�xx� 2" _xx� x � 0: (16)

In such a case, the amplitude might not be a constant, but
a function depending on time or frequency. So we assume

x � a�t� cos!t� b: (17)

By simple operation, we can identify b � 0. In this paper,
we assume that the amplitude weakly varies with time.
We write the amplitude in the form

a�t� � Ae�t  A; j�j � 1: (18)

Accordingly, we have approximately the following
expressions:

_xx  �x�!
�����������������
A2 � x2

p
; (19)

�xx  ��2 �!2�x� 2�!
�����������������
A2 � x2

p
: (20)

Substituting x, _xx, and �xx into Eq. (16), we get the residual

R � �1� �2 � 2�"�!2�x� 2��� "�!
�����������������
A2 � x2

p
:

(21)

Setting
R
A
0 Rdx � 0, we have

A2

2
�1� �2 � 2�"�!2� �

1

2
�A2��� "�! � 0: (22)

After a careful examination of Eq. (19), we find that the
constant, �, is a linearized factor, i.e., _xx� �x. This
analysis leads to the identification of the constant �
from the following relation:
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_xx � �
1

2"
�x� �xx� � �x: (23)

Omitting the nonlinear terms, we have

� � �
1

2"
�1� �2 �!2�: (24)

In view of Eqs. (22) and (24), we finally obtain

� � �" and ! �
��������������
1� "2

p
: (25)

So we have the following solution:

x � Ae�"t cos�
��������������
1� "2

p
�t; (26)

which is an exact solution.
The above illustration is important to nonlinear os-

cillators with damping terms. Now we consider the
van der Pol equation:

�xx� x� "�1� x2� _xx � 0: (27)

Substituting Eqs. (17), (19), and (20) into Eq. (27), and
noting that the constant, b, is easily identified as b � 0,
we have the following residual:

R � �1� �2 �!2�x� 2�!
�����������������
A2 � x2

p

� "�1� x2���x�!
�����������������
A2 � x2

p
�: (28)

By similar operation as illustrated above, we setR
A
0 Rdx � 0, i.e.,

A2

2
�1� �2 �!2 � "���

1

4
�A2!�2�� "� �

1

4
A4"��

1

4
A4"! � 0: (29)

Note that when

_xx �
�xx� x

"�1� x2�
� �x; (30)

we have

1� �2 �!2 � "� � 0: (31)

In view of Eqs. (29) and (31), we obtain the following
relation:

� � �
�A2 � ��!"

2�!� "A2 : (32)

Substituting � into (31) yields the result

1�
"2�A2 � ��2!2

�2�!� "A2�2
�!2 �

"2�A2 � ��!

2�!� "A2 � 0: (33)

In case " � 1, the above equation reduces to

! � 1�
"2�A2 � ��2

8�2 �
"2�A2 � ��

4�
�O�"3�: (34)

When " ! 1, from Eq. (33), we obtain
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! �
A2

�A2 � ��"
�O

�
1

"2

	
: (35)

Perturbation method shows that A � 2, so we have the
following solution:

x � Ae��t cos!t � 2 exp��
�4� ��!"t
2�!� 2"

� cos!t (36)

The frequency is determined from Eq. (33). In case
" ! 1, we obtain the period

T �
2�
!

�
2��A2 � ��"

A2 � 1:348"; (37)

while the exact one is Tex � 1:614" when " ! 1. The
16:5% accuracy is good as the obtained solution is valid
for the whole solution domain 0 � " <1.

Lopez-Ruiz and Lopez [12] calculated exactly the
limit cycles of some Lienard systems in the weakly
(" ! 0) and in the strongly (" ! 1) nonlinear regimes.
Our results agree with Lopez-Ruiz and Lopez’s exact
solution in the weakly and strongly nonlinear regimes.

By the homotopy perturbation method [4,5], and the
modified Lindsted-Poincare method [13–15], the present
author obtained the following approximate period for the
van der Pol equation:

T � 2�

������������������
1�

1

8
"2

r
: (38)

The relative error is 37:5% when " ! 1.
In summary, we conclude from the results obtained

that the method developed here is extremely simple in
its principle, quite easy to use, and gives a very good
accuracy in the whole solution domain, even with the
simplest trial functions. The accuracy depends upon the
trial functions similar to that in the Ritz’s method.
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Theoretically, any accuracy can be achieved by a suitable
choice of the trial functions. Coupled with other known
results, the method provides a powerful mathematical tool
to the determination of limit cycles.

The author expresses his thanks to the reviewers for
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