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Global Charges of Stationary Non-Abelian Black Holes
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We consider stationary axially symmetric black holes in SU(2) Einstein-Yang-Mills-dilaton theory.
We present a mass formula for these stationary non-Abelian black holes, which also holds for Abelian
black holes. The presence of the dilaton field allows for rotating black holes, which possess nontrivial
electric and magnetic gauge fields, but do not carry a non-Abelian charge. We further present a new
uniqueness conjecture.
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Here we utilize the dilaton charge, to derive a mass
formula for stationary axially symmetric SU(2) EYMD (5)
Introduction.—Black holes in Einstein-Maxwell (EM)
theory are uniquely characterized by their global charges:
their mass M, their angular momentum J, their electric
charge Q, and their magnetic charge P [1,2]. EM black
holes further satisfy remarkable relations between their
horizon properties and their global charges [2], such as
the Smarr formula [3],

M � 2TS� 2�J��el;HQ��mag;HP; (1)

where T represents the temperature of the black holes and
S their entropy, � denotes their horizon angular velocity,
and �el;H and �mag;H represent their horizon electrostatic
and magnetic potential, respectively.

When non-Abelian gauge fields are coupled to gravity,
black hole solutions are no longer uniquely characterized
by their global charges [4,5], and neither does the mass
formula, Eq. (1), hold [5,6]. SU(2) Einstein-Yang-Mills
(EYM) theory, for instance, possesses sequences of black
hole solutions, which carry non-Abelian magnetic fields
outside their regular horizon, but no non-Abelian mag-
netic charge [4,7–9]. These non-Abelian black hole solu-
tions are characterized additionally by the node number k
and the winding number n of their gauge fields [4,7].

In many unified theories, including Kaluza-Klein
theory and string theory, a scalar dilaton field arises
naturally. Black holes in Einstein-Maxwell-dilaton
(EMD) theory [10–12] and in SU(2) Einstein-Yang-
Mills-dilaton (EYMD) theory [7,13], possess a further
global charge, the dilaton charge D, describing the
asymptotic falloff of the dilaton field. For EMD black
holes with vanishing electromagnetic charges the dilaton
charge vanishes as well. In contrast, the dilaton charge is
finite for all genuinely non-Abelian black holes of EYMD
theory.
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black holes, similar to the Smarr formula,

M � 2TS� 2�J� 2�el;HQ�
D
�
; (2)

where � is the dilaton coupling constant. In this new mass
formula the dilaton charge D enters, instead of the mag-
netic charge P, present in the Smarr formula. This is
important, since the genuinely non-Abelian black hole
solutions carry magnetic fields, but no magnetic charge.
Thus the dilaton charge term takes into account the con-
tribution to the total mass from the magnetic fields out-
side the horizon. This mass formula holds for all
nonperturbatively known black hole solutions of SU(2)
EYMD theory [7,9,13], including the rotating general-
izations of the static nonspherically symmetric non-
Abelian black hole solutions, presented here.

Non-Abelian black holes.—We consider black holes of
the SU(2) EYMD action with matter Lagrangian
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For the metric we choose the stationary axially sym-
metric Lewis-Papapetrou metric in isotropic coordinates,
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with Killing vectors � � @t and  � @’. For the gauge
field A � A�dx

� symmetry requires �L�A�� � D�W�,
�L A�� � D�W with compensating su(2)-valued func-
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with %nr � ~%% � �sin� cosn’; sin� sinn’; cos��, etc., and n is
the winding number of the solutions. For this ansatz
W� � 0 and W � n%z=2. All functions depend only on
x and �.

The event horizon of stationary black holes resides
at a surface of constant radial coordinate x � xH, and
is characterized by the condition f�xH� � 0. The
Killing vector field + � ��� is orthogonal to and
null on the horizon, where � is the horizon angular
velocity [14]. At the horizon we impose the boundary
conditions [9] f � m � l � 0, ! � !H � �xH, @x� �
0, H1 � 0, @xH2 � @xH3 � @xH4 � 0, B1 � n�cos� �
0, B2 � n�sin� � 0.

Axial symmetry and regularity impose the boundary
conditions on the symmetry axis (� � 0), @�f � @�l �
@�m � @�! � 0, @�� � 0, H1 � H3 � B2 � 0, @�H2 �
@�H4 � @�B1 � 0, and agree with the boundary condi-
tions on the � � �=2 axis, except for B1 � 0, @�B2 � 0.

The boundary conditions at infinity, f � m � l � 1,
! � 0, � � 0, H1 � H3 � 0, H2 � H4 � ��1�k, B1 �
B2 � 0, where k denotes the node number, ensure that
the black holes are asymptotically flat and magnetically
neutral.

The global charges of the EYMD black holes are
obtained from the asymptotic expansion. The metric
functions yield the mass M, and the angular momentum
J � aM,

f ! 1�
2M
x
; !!

2J

x2
; (6)

the matter functions yield the non-Abelian electric charge
Q, and the dilaton charge D,

B1 !
Q cos�
x

; B2 ! ���1�k
Q sin�
x

;

�! �
D
x
:

(7)
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The definition of Q corresponds to rotating to a gauge,
where  ! Q

x
%z
2 [9] (see also [15]). Note, that the modulus

of the non-Abelian electric charge, jQj, agrees with the
gauge invariant definition of the non-Abelian electric
charge given in Ref. [5].

Mass formula.—We derive the mass formula, Eq. (2),
both for genuinely non-Abelian black holes, satisfying
the above set of boundary conditions, and for embedded
Abelian black holes, possessing both electric and mag-
netic charges [9,12,16]. We embed the Abelian black holes
via

A�dx� � �A0dt�A’d’�
%z
2
; (8)

where A denotes the Abelian gauge field.
We start from the general expression for the mass of

stationary axially symmetric black holes [14],

M � 2TS� 2�JH �
1

4�

Z
�
R0
0

�������
�g

p
dxd�d’; (9)

and express R0
0 with the help of the Einstein equations and

the dilaton equation of motion,
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Evaluating the integral involving the dilaton
d’Alembertian we obtain the dilaton term, D=�, in the
mass formula [7].

We replace the horizon angular momentum JH by the
global angular momentum J [14],

J � JH �
1
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To evaluate the remaining integral I, we make the re-

placements F/0 � D/A0 and F/’ � D/�A’ �W � [17],
where D/ � @/ � i�A/; ��. For embedded Abelian solu-
tions, W � 0. Employing the gauge field equations of
motion, we obtain

I �
1

�

Z
�
Tr�D/����W �e

2��F0/ �������
�g

p
��dxd�d’;

(13)

with electrostatic potential � � +�A� � A0 ��A’. We
replace the gauge covariant derivative by the partial
derivative, since the trace of a commutator vanishes.
Only the / � r term contributes to the integral I [18],

I �
1

�

Z
Tr�����W �e2��F0r �������

�g
p

�j1xHd�d’: (14)

Thus the mass formula holds, provided I � 2�el;HQ.
We first prove this equality for embedded Abelian black

holes. We introduce the Abelian electrostatic potential,
�el � +�A� � A0 ��A’, and the conserved charge
~QQ [19],
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FIG. 1. The global charges are shown as functions of the
dilaton coupling constant � (xH � 0:1, !H � 0:02, k� n� 1).
Also shown are the global charges of embedded Abelian
solutions with Q � 0 and P � 1 (dotted).
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FIG. 2. Cuts through the parameter space of Q � 0 black
hole solutions (� � 1:5,
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~QQ does not depend on the choice of two-sphere S, i.e.,
~QQ�xH� � ~QQ�1� � ~QQ, and ~QQ � Q for ��1� � 0.
Employing the asymptotic expansion, F 0r �������

�g
p

�
�Q sin�� o�1�, and noting that the electrostatic poten-
tial is constant at the horizon, the integral I becomes

I � 2Q
�
�el;H �

1

4�

Z
�el;1 sin�d�d’

�
: (16)

�el is determined only up to a constant. In a gauge where
the contribution to I from infinity vanishes, we obtain I �
2�el;HQ. On the other hand, in a gauge where �0

el;H � 0
the integral receives its only contribution from infinity,
and 1

4�

R
�0

el;1 sin�d�d’ � ��el;H, yielding again I �
2�el;HQ. When the Smarr formula holds [12,20], the
mass formula Eq. (2) implies D=� � �mag;HP��el;HQ.

For genuinely non-Abelian black holes the equations of
motion still require the electrostatic potential to be con-
stant at the horizon. However, in contrast to the Abelian
case, where the horizon electrostatic potential is only
determined up to a constant, genuinely non-Abelian
black holes are only obtained if �H � �W [9]. This
condition is invariant under time independent gauge
transformations, and it is implemented via the boundary
conditions. At the same time this condition leads to the
vanishing of the integrand of I at the horizon. Hence, for
non-Abelian solutions, the integral I receives a contribu-
tion always only from infinity.

Subject to the above ansatz and boundary conditions,
we see from the asymptotic expansion that at infinity
F0r �������

�g
p

� �Q sin� �cos�%nr � ��1�k sin�%n��=2 � o�1�
remains finite, A0 � o�1� does not contribute to the in-
tegral, and A’ � �n�1� ��1�k� sin�%n�=2� o�1� con-
tributes only for odd node number k. Taking the trace
leaves the same angular integral, independent of k, yield-
ing I � 2�nQ � 2�el;HQ with �el;H � �n [21]. This
completes the proof for genuinely non-Abelian black
holes.

The numerically constructed stationary axially sym-
metric EYMD black holes satisfy the mass formula,
Eq. (2), with an accuracy of 10�3. So do the numerically
constructed EMD black holes. The EYM black holes are
included in the limit �! 0, since D=� remains finite.

Stationary Q � 0 solutions.—While similar in many
respects to EYM black holes [9], EYMD black holes also
possess new features. In Fig. 1 we exhibit the global
charges, the mass M, the specific angular momentum a,
the non-Abelian electric charge Q, and the relative dila-
ton charge D=� as functions of the dilaton coupling
constant � for k � n � 1 black hole solutions.
Interestingly, the non-Abelian electric charge Q can
change sign in the presence of the dilaton field.

Thus we observe the surprising feature that the non-
Abelian charge Q of rotating EYMD black holes can
171101-3
vanish. Cuts through the parameter space of solutions
with vanishing Q are exhibited in Fig. 2. Rotating black
hole solutions with Q � 0 exist only above a minimal
value of �; �min � 1:15 for k � n � 1. These Q � 0
EYMD black holes represent the first black hole solutions,
which carry nontrivial non-Abelian electric and mag-
netic fields and no non-Abelian charge. As a consequence,
these special solutions do not exhibit the generic asymp-
totic noninteger power falloff of the stationary non-
Abelian gauge field solutions [9,20].

Uniqueness conjecture.—Reconsidering the unique-
ness conjecture for EYMD black holes, we replace the
magnetic charge P by the dilaton charge D. However,
black holes in SU(2) EYMD theory are not uniquely
characterized by their mass M, their angular momentum
J, their non-Abelian electric charge Q, and their dilaton
charge D. This is seen in Fig. 3, where the relative dilaton
charge D=� is shown as a function of the mass M, for the
static non-Abelian black hole solutions with n � 1� 3,
k � 1� 3 (� � 1). Whereas solutions with the same
winding number n do not intersect, those with different
171101-3
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FIG. 3. The relative dilaton charge D=� is shown as a func-
tion of the mass for static non-Abelian solutions (� � 1) and
embedded Abelian solutions with Q � 0 and P � n.
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winding numbers can intersect. We therefore introduce an
additional charge, a topological charge N suggested by
Ashtekar [22],

N �
1

4�

Z
H

1

2
"ijk6

id6j ^ d6k; (17)

where 6 is a map from the horizon two-sphere H to the
two-sphere of directions in the Lie-algebra of SU(2),
defined from the pullback of the Yang-Mills field strength
to H, FH � F��jHd� ^ d�. For non-Abelian solutions,
N � n, for embedded Abelian solutions, N � 0.

We thus put forward a new uniqueness conjecture,
stating that black holes in SU(2) EYMD theory are
uniquely determined by their mass M, their angular
momentum J, their non-Abelian electric charge Q, their
dilaton charge D, and their topological charge N. To
illustrate the validity of the conjecture also for stationary
black holes, we show in Fig. 4 the relative dilaton charge
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FIG. 4. The relative dilaton charge D=� is shown as a
function of the mass for non-Abelian black holes with n � 3,
(� � 1), and embedded Abelian solutions with Q � 0 and
P � 3, for specific angular momentum a � 0:25, 0.1, and 0.
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D=� for several values of the specific angular momentum
a for black holes with n � 3, k � 1� 3 (� � 1).

Since the relative dilaton charge D=� remains finite in
the limit �! 0, this conjecture may formally be ex-
tended to the EYM case, by replacing the dilaton charge
D by the relative dilaton charge D=�.
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